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Abstract
Several reduced deformation models in computer animation, such as linear blend skinning, point-based anima-
tion, embedding in finite element meshes, cage-based deformation, or subdivision surfaces, define surface vertex
positions through convex combination of a rather small set of linear transformations. In this paper, we present
an algorithm for computing tight normal bounds for a surface patch with an arbitrary number of triangles, with
a cost linear in the number of governor linear transformations. This algorithm for normal bound computation
constitutes the key element of the Bounded Normal Tree (BN-Tree), a novel culling data structure for hierarchical
self-collision detection. In situations with sparse self-contact, normal-based culling can be performed with a small
output-sensitive cost, regardless of the number of triangles in the surface.

1. Introduction

Self-collision refers to the intersection of an object’s sur-
face with itself. Self-collision poses an important complexity
challenge onto typical acceleration data structures for col-
lision detection, because pairs of geodesically nearby sur-
face primitives cannot be efficiently pruned away. Many
applications in computer animation, such as cloth anima-
tion [BFA02], character skinning [LCF00], or soft-tissue
cutting [SOG06], are likely to exhibit self-collision phenom-
ena, hence the importance of efficient solutions.

In this work, we address self-collision detection of sur-
faces with a high triangle count that are deformed through
their embedding in a reduced deformation field with rel-
atively few degrees of freedom. In particular, we address
reduced deformations where the position of each surface
vertex is defined as a convex combination of linear trans-
formations. This type of reduced deformation has multi-
ple examples in computer animation: (i) character defor-
mation through linear blend skinning or skeleton subspace
deformation [LCF00], (ii) cage-based deformation using
convex basis functions [JMD∗07], (iii) embedding in low-
resolution finite-element meshes, (iv) subdivision surfaces
applied, e.g., to post-processing cloth animation [BFA02],
or (v) point-based animation [MKN∗04].

† http://www.gmrv.es/Publications/2009/SGO09/

Our work complements hierarchical collision detection al-
gorithms, in particular the approach for self-collision detec-
tion of Volino and Magnenat-Thalmann [VMT94]. Their al-
gorithm computes in a bottom-up fashion a tree of bounding
volumes and normal bounds, and executes self-collision de-
tection by top-down traversal of the tree. In this paper, we
present two main contributions:

1. We have designed a novel algorithm for efficient computa-
tion of normal bounds (See Section 3). Given a patch with n
triangles whose vertices are defined by convex combinations
of m linear transformations, our algorithm computes a tight
normal bound with cost O(m). On dense surface patches
with n� m, our algorithm produces large speed-ups. As a
substep of the algorithm, we compute efficient bounds of the
deformation gradient of a patch.

2. We have incorporated our efficient evaluation of normal
bounds into an algorithm for self-collision detection (See
Section 4). We refer to it as Bounded Normal Tree (BN-
Tree). The algorithm employs on-demand update of nor-
mal bounds and exploits temporal coherence through front
caching with conservative ascent.

2. Related Work

Bounding volume hierarchies (BVHs) [GLM96] have long
been used as acceleration data structures for collision
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Figure 1: From left to right: 13041-vertex cloth computed using Loop subdivision; 231-vertex control mesh; self-collisions
shown in red; normal test front of the BN-Tree; and normal test front using state-of-the-art hierarchical self-collision detec-
tion [VMT94]. In the color-coded test front, blue means that self-collisions are pruned high in the tree, while red means that the
tests reach the leaves. With bluish color, normal bounds are computed high in the BN-Tree, leading to high efficiency.

detection. When applied to general deformation models,
BVHs are updated in a bottom-up manner every simulation
frame [dB97]. If the choice of bounding volumes (BVs) is
one of spheres, AABBs, or k-DOPs, the cost of the update
is linear in the number of vertices, with constant cost per
BV. However, deformation models with far fewer degrees of
freedom than the number of vertices potentially allow for
sublinear update of BVs high in the hierarchy, and thereby
efficient interruptible collision detection [Hub95], or even
sublinear cost for exact collision detection.

As mentioned in the introduction, self-collision detection
poses an additional complexity, because geodesically nearby
surface primitives cannot be easily pruned away. Most of the
research on self-collision detection has targeted cloth anima-
tion. Volino and Magnenat-Thalmann [VMT94] presented a
hierarchical algorithm that exploits normal and contour con-
ditions for pruning large surface patches (See more details
in Section 4.1). Their algorithm incurs an O(n) cost for up-
dating the hierarchy. Their initial approach employed dis-
crete normal cones, while Provot [Pro97] used actual cones.
Baciu and Wong [BW02] adopted many of these ideas into
a parallel algorithm and implemented it on graphics hard-
ware. Mezger et al. [MKE03] used oriented inflated k-DOPs
together with other heuristics. Govindaraju et al. [GKJ∗05]
proposed a chromatic decomposition of a triangle mesh in
order to circumvent adjacency-related problems. More re-
cently, Tang et al. [TCYM08] have incorporated additional
adjacency-related optimizations, as well as an extension of
Volino’s normal criterion to the continuous collision de-
tection setting. Self-collision detection has also been ad-
dressed with other data structures and algorithms, such as
spatial partitioning data structures optimized through hash-
ing [THM∗03] or visibility-based culling [GRLM03]. Hier-
archies of normal cones have been used for culling in other
problems such as general proximity queries [JC01], and half-
space intersections (which are somewhat more involved but
related to normal cones) have been used for hierarchical
back-face culling [KMGL99]. The dynamic update of nor-
mal cones is easily computed as a rotation under rigid trans-

formations, but general deformations require visiting each
and every triangle bounded by the cone.

Several researchers have designed collision detection al-
gorithms with a potentially sublinear cost on the number of
vertices, for deformation models governed by few degrees
of freedom. Larsson and Akenine-Möller [LAM03] applied
those ideas to morphing, while Klug and Alexa [KA04]
later improved them for linearly interpolated shapes. James
and Pai [JP04] introduced the BD-Tree, an efficient sphere-
tree for bounding surfaces described by linear combina-
tion of a few degrees of freedom. The BD-Tree was orig-
inally applied to reduced deformable models, and other
extensions of sphere-trees have been applied to FEM de-
formations on coarse meshes [MO06], geometric deforma-
tions through shape matching [SBT06], or meshless anima-
tions [AKP∗05].

Kavan and Zara [KZ05] computed efficient BVs for
skinned articulated bodies, with each surface vertex defined
by a convex combination of rigid transformations. Given
m rigid transformations, they found a set of limited con-
vex combinations defined by a set of O(m2) corners in IRm.
Then, finding the bound of a surface patch, regardless of
the number of vertices, had a cost O(m2). The use of lim-
ited convex combinations has been extended to spherical
blend skinning [KOZ06] and FEM deformations on coarse
meshes [OGRG07]. Steinemann et al. [SOG08] found a
way to compute bounds more efficiently, by identifying ex-
treme corners with cost O(m). Their algorithm was initially
used on point-based animations, but it is applicable to any
deformation defined through convex combination of linear
transformations. Approaches for bound computation based
on limited convex combinations are not directly applicable
to the computation of normal bounds, as surface normals
are quadratic in vertex positions. One may then think of
augmenting the coordinate set to include quadratic position
terms, but this would lead to an explosion into O(m2) prod-
ucts of the original linear transformations.

Our work is perhaps closest in spirit to the one of Grin-
spun and Schröder [GS01], who proposed a computation of
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interference of subdivision surfaces by efficient evaluation
of normal bounds. Their work differs from ours, however,
both in the method and its target application. Theirs exploits
bounds of partial derivatives of the eigenvectors of subdivi-
sion matrices and is applicable to the limit surfaces produced
by subdivision schemes. Ours, on the other hand, exploits
bounds of a triangle’s deformation gradient and is applica-
ble to triangle meshes defined through convex combination
of arbitrary linear transformations.

3. Efficient Normal Bounds

In this section, we describe our main contribution: An effi-
cient method to compute a normal bound for a surface patch
S with n triangles, whose vertices are defined through con-
vex combinations of m linear transformations. The normal
bound of S is computed with a cost O(m), for a general case
where the number of transformations, m, is much smaller
than the number of triangles n.

The naïve approach to solve this problem would be
to define transformed normals using the cross product of
edge vectors, i.e., n = (a− b)× (a− c), bound the vari-
ous operands of this expression for all triangles in the patch,
and then bound the cross product operation using interval
arithmetic. However, edge vectors are not spatially coherent
across triangles, hence bounding this expression yields typi-
cally a useless normal cone that spans the complete sphere.

Assuming spatially coherent triangle normals in the unde-
formed state, together with spatially coherent convex trans-
formation weights, our approach for computing a bound of
the normal will be the following: We will define the normal
of each deformed triangle through an operation composed
by spatially coherent operands; we will bound the normal
of all triangles in the patch S by first bounding the spatially
coherent operands, and then bounding their composition.

In the rest of this section, we describe first the expression
we use for defining transformed normals, based on a trian-
gle’s deformation gradient. Hence, next we describe how to
formulate a triangle’s deformation gradient using spatially
coherent operands. Finally, we discuss the run-time compu-
tation of bounds for the deformation gradient and the nor-
mals for a surface patch.

3.1. Transformed Normals

Barr [Bar84] devised an expression for transforming the nor-
mal of a smooth surface given the deformation gradient J.
The deformation gradient is constant inside a triangle, hence
the rest-state normal of a triangle, n0, can be transformed
using Barr’s expression as

n = Mn0 = detJ ·J−T n0. (1)

With a column-wise expression of J = (j1 j2 j3), the trans-
formation can be more easily computed as

M = (j2× j3 j3× j1 j1× j2) . (2)

There are other alternatives for defining the deformed nor-
mal, such as using the cross product of triangle-edge vectors,
or the cross product of surface partial derivatives. However,
neither of them is well suited in our case. Triangle-edge vec-
tors are not spatially coherent, as discussed above, and the
partial derivatives cannot be obtained from an analytic ex-
pression for a triangulated surface. The use of Barr’s expres-
sion, however, decomposes the computation of the normal
into operands that are indeed spatially coherent: (i) the input
normal and (ii) the deformation gradient.

The deformation gradient is not uniquely defined for a tri-
angle. Botsch et al. [BSPG06] discuss extensively this issue,
and they propose the following formula, which depends only
on the initial and deformed positions of the triangle vertices.
Given initial vertex positions {a0,b0,c0} and deformed po-
sitions {a,b,c}, they define the deformation gradient

J =
(

a b c
)

G, (3)

G =

 1 0 0
0 1 0
−1 −1 0

( (a0− c0) (b0− c0) n0
)−1

.

The rows of the matrix G represent the gradients of a trian-
gle’s basis functions.

We have considered other alternatives for computing the
deformation gradient, such as using a fourth point per trian-
gle, as done by Sumner et al. [SP04]. However, the choice of
fourth point is not straightforward, and this alternative tends
to suffer from amplification due to the inverse of badly con-
ditioned matrices, which negatively affects the computation
of bounds. We obtained the best results with our approach.

3.2. Transformed Points

To calculate the new positions of the vertices we will assume
they are defined as a convex combination of governor linear
transformations:

p = ∑wk(Akp0 + tk). (4)

This assumption applies to the deformation models dis-
cussed in the Introduction, such as subdivision surfaces
(with control points as governors), linear blend skinning
(with bones as governors), or point-based animation (with
particles as governors). Convex combinations imply that
0≤ wk ≤ 1 and ∑wk = 1.

Instead of directly using the above expression for defining
vertex positions, we employ their relative position w.r.t. the
centroid of the patch. Specifically, we express the rest-state
vertex positions as p0 = ∆p+x0, with x0 the rest-state patch
centroid. The transformation of the centroid can be extracted
from Eq. (4), which yields modified translations t̄k = Akx0 +
tk. Altogether, the transformed vertex positions can be then
defined as

p = ∑wk(Ak∆p+ t̄k). (5)
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Using relative vertex positions leads to tighter bounds for
the deformation gradient, as the norm of the values under
consideration becomes smaller. This is especially relevant
for the term Jk to be defined later in Eq. (15).

3.3. Decomposition of the Deformation Gradient

We decompose the deformed position of a vertex p into three
different terms: patch deformation pp, triangle deformation
pt , and vertex deformation pv:

p = pp +pt +pv. (6)

These three terms, which we define in detail below, carry the
following information. The patch-deformation term captures
the per-patch average deformation of all triangles. Given the
remaining deformation, the triangle-deformation term cap-
tures the average deformation for the three vertices in a trian-
gle. And the vertex-deformation term captures the remaining
in-triangle deformation. The decomposition of vertex posi-
tions leads to an analogous decomposition of the deforma-
tion gradient,

J = Jp +Jt +Jv. (7)

This decomposition favors the computation of tight bounds.

3.3.1. Patch Deformation

For each patch, we compute an average linear transforma-
tion Ap and an average translation tp. Then, we express the
governor transformations as Ak = Ap + ∆Ak, t̄k = tp + ∆tk.
Thanks to the properties of convex weights, we can extract
the patch-deformation term from Eq. (5):

p = pp +∑wk(∆Ak∆p+∆tk), (8)

with pp = Ap∆p+ tp.

From Eq. (3), and substituting the contribution to vertex
positions due to patch deformation, we can now define the
patch deformation gradient for a triangle,

Jp =
(

Ap∆a+ tp Ap∆b+ tp Ap∆c+ tp
)

G. (9)

The contribution of the translations cancels out because the
gradients of the basis functions (i.e., the rows of G) add up
to zero. Then, the patch deformation gradient can be sum-
marized as:

Jp = ApJ0, with J0 =
(

∆a ∆b ∆c
)

G. (10)

3.3.2. Triangle Deformation

For each triangle-governor pair, we define an average weight
w̄k as the mean of the weights of that governor for the three
vertices of the triangle. By separating the average weight in
Eq. (8), we can also separate the triangle and vertex defor-
mation terms:

pt = ∑ w̄k(∆Ak∆p+∆tk), (11)

pv = ∑(wk− w̄k)(∆Ak∆p+∆tk). (12)

By plugging the triangle-deformation terms into the defi-
nition of the gradient, Eq. (3), we obtain the triangle defor-
mation gradient. The use of average weights simplifies this
deformation gradient in two ways. First, since we use aver-
age weights, the transformations of the three triangle vertices
are the same. Second, the use of average weights together
with the fact that the basis-function gradients add up to zero,
cancel out the contribution of the translation. Altogether, the
triangle deformation gradient can be expressed as

Jt = AtJ0, with At = ∑ w̄k∆Ak. (13)

3.3.3. In-Triangle Vertex Deformation

The remaining in-triangle vertex deformation, pv, defined in
Eq. (12), yields the following term of the deformation gradi-
ent by substitution into Eq. (3):

Jv = ∑(∆Ak ∆tk)Jk, (14)

Jk =
(

(wak− w̄k)∆a (wbk− w̄k)∆b (wck− w̄k)∆c
wak− w̄k wbk− w̄k wck− w̄k

)
G.

The in-triangle deformation gradient is not spatially coher-
ent, hence it is crucial to minimize its magnitude. This is
achieved by using vertex positions relative to the patch cen-
troid, as discussed in Section 3.2, together with extracting
the average transformations.

3.4. Bounding the Deformation Gradient

Substituting the various terms of the deformation gradient
into Eq. (7), we obtain the complete decomposed expression
for one triangle’s deformation gradient:

J =
(
Ap +At

)
J0 +∑(∆Ak ∆tk)Jk. (15)

In this expression, the terms J0, At , and Jk vary across the
triangles in a patch. With spatially coherent weights, the term
At varies smoothly across triangles. With spatially coherent
rest-state normals, the term J0 varies smoothly across tri-
angles as well. The term Jk does not vary smoothly, but its
magnitude is small compared to the other terms, as it de-
pends only on in-triangle variations.

We bound the deformation gradient in a patch by bound-
ing separately the various variable terms. We represent with
[x] a variable that bounds each element of x with an inter-
val. Then, applying interval arithmetic, we can compute the
bound of the deformation gradient as

[J] =
(
Ap +[At ]

)
[J0]+∑(∆Ak ∆tk) [Jk] . (16)

We precompute the bounds [J0] and [Jk] by simply bound-
ing the per-triangle values as a pre-process. The bound of tri-
angle average transformations, [At ], needs to be computed at
run-time. Since the average weights w̄k are convex, bound-
ing At reduces to a problem of bounding convex combina-
tions of linear transformations. We apply the algorithm of
Steinemann et al. [SOG08], which exploits limited convex
combinations with efficient evaluation of extreme corners,
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and bounds At with cost O(m), with m the number of trans-
formations.

3.5. Bounding the Transformed Normals

For each patch, we precompute a bound of rest-state nor-
mals, [n0]. Then, following Eq. (1) and Eq. (2), and given
the bound of the deformation gradient [J], we compute the
normal bound of a patch using interval arithmetic as

[n] = ([j2]× [j3] [j3]× [j1] [j1]× [j2]) [n0] . (17)

The normal bound [n] described above can be regarded as an
axis-aligned bounding box. Other possible representations
include a normal cone defined by an axis-angle pair.

4. Self-Collision Detection Using BN-Trees

Normal bounds for hierarchical self-collision detection were
introduced by Volino and Magnenat-Thalmann [VMT94].
In this section, we present a modified version of their al-
gorithm, called the Bounded Normal Tree (BN-Tree), that
computes normal bounds on-demand using the efficient al-
gorithm presented in the previous section. We pay special
attention to the elementary self-collision test based on nor-
mal bounds, and the traversal and update of the tree.

4.1. Elementary Self-Collision Test

The algorithm of Volino and Magnenat-Thalmann prunes
surface patches S that do not self-collide if the following two
conditions hold:

1. There exists a vector v such that, for all triangles in S,
vT ni > 0, with ni the triangle normal.

2. The orthogonal projection of the contour of S onto a plane
with normal v does not self-intersect.

Following observations by Volino and Magnenat-Thalmann,
we construct the BN-Tree by partitioning the surface into
patches that maximize the area-perimeter ratio. In this way,
the ‘contour test’ 2 above is extremely unlikely to fail.
Hence, and also following Volino and Magnenat-Thalmann,
we omitted the contour test in our implementation. Let us re-
mark that the self-collision detection algorithm is not conser-
vative without the contour test, and in Section 6 we discuss
an extension to efficiently handle it.

The ‘normal test’ 1 above reduces to computing the in-
tersection of the half-spaces defined by all triangle normals
in the patch. Similar to Volino and Magnenat-Thalmann, we
perform a slightly conservative version of the normal test
by storing a discrete normal cone (DNC) consisting of a bit
mask for 14 directions (6 for the directions of the Cartesian
axes, and 8 for the corners of a cube aligned with the axes).

In the original algorithm by Volino and Magnenat-
Thalmann, DNCs are computed bottom-up in a BVH, such
that the DNC of a node is computed by intersecting the

DNCs of its children. The total cost for updating DNCs is
then O(n), with n the number of triangles in the surface.
Instead, using our algorithm for computing normal bounds
from the previous section, we can update a DNC on-demand
with cost O(m), with m the number of linear transformations
that govern the deformation. Given a normal bound [n], a
‘true’ bit in the DNC denotes that all triangle normals in the
patch have a positive dot product with the direction associ-
ated to that bit. The value of the bit is computed by checking
whether the lower bound of the dot product between its as-
sociated direction and the bound [n] is positive.

4.2. Hierarchical Self-Collision Detection

Given as input a connected triangle mesh, we construct as
preprocessing a BN-Tree that successively partitions mesh
patches into 2 connected components. If the triangle mesh
is not connected, the various connected components may be
treated separately. Note that we have used a branching factor
of 2, but other branching factors are also possible.

At run-time, a self-collision detection test starts by issuing
a self-collision query on the root node, and then proceeds
hierarchically by performing three types of queries:

1. self_collide(a) prunes the subtree rooted under node a if
its corresponding surface patch fulfills the normal test de-
scribed in Section 4.1. This test requires the computation
of the DNC of a.

2. self_collide(a, b) is a query on adjacent nodes a and b,
and is executed similarly. It requires the computation of
the intersection of the DNCs of a and b.

3. collide(a, b) is a query on disjoint nodes a and b, and it
checks the collision between BVs of a and b.

Queries with a positive result descend recursively on chil-
dren nodes, issuing self_collide() or collide() queries based
on whether the nodes are adjacent or disjoint. At the leaves
of the tree, we perform primitive-level tests.

Before executing a collide() or self_collide() test, we first
check whether the BVs or DNCs have already been com-
puted in the current simulation frame for the involved nodes.
If they are not computed yet, we execute an on-demand up-
date. For BVs, we use the efficient update algorithm for
AABBs by Steinemann et al. [SOG08]. For DNCs, we use
our novel normal bound computation described in Section 3.
In order to test adjacency of nodes, we store adjacent pairs
in a hash table, although other approaches are also possi-
ble [VMT94, GS01]. A hash table is efficient in our case
because our queries descend simultaneously to all children,
hence most nodes need only test for adjacency against nodes
at the same BN-Tree level.

4.3. Front Caching

Instead of starting the update of DNCs at the root of the BN-
Tree every animation frame, we exploit temporal coherence
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Figure 2: Left: Performance comparison of BN-Tree and
[VMT94] for cloth subdivision (Fig. 1); Right: performance
gain as a function of the number of Loop subdivisions.

and store a front that determines where to apply our efficient
computation of DNCs. At a new frame, we first compute the
DNCs of front nodes, and then compute DNCs from the front
up to the root by intersection of children’s DNCs. If a node
below the front is visited during a self-collision query, we
update its DNC on-demand. We store separate update fronts
for DNCs and BVs.

In order to determine the update front, we mark nodes
if they were tested in a self-collision query in the previ-
ous frame or if at least the DNC of one of their children
was computed. In essence, the front for DNC computation
separates the subtree of marked nodes from the unmarked
ones. However, this showed to be insufficient, as the self-
collision query may suffer a sudden descent on several lev-
els due to degradation of DNCs. We avoid such costly query
descents by performing a conservative ascent of the DNC
update front. If a node whose DNC was computed in the pre-
vious frame is now a candidate for ascent (because it was not
tested in a self-collision query and none of the DNCs of its
children were computed), we perform a test computation of
its parent’s DNC. If this DNC degrades and its bitmask has
less than 3 active bits, we preserve the location of the up-
date front. Front caching together with conservative ascent
brought additional temporal coherence to the self-collision
queries and, therefore, an important speed-up.

We add yet another optimization to the update front in or-
der to avoid costly computation of DNCs low in the tree.
As a preprocessing, we check for each node whether it is
more efficient to compute the DNC in a bottom-up fash-
ion on its subtree or using our algorithm for computing nor-
mal bounds. At run-time, if the update front reaches a node
where bottom-up computation of the DNC is more efficient,
we force the front all the way to the leaves on that subtree.

5. Results

We discuss now the application of the BN-Tree to cloth up-
sampling using subdivision surfaces, linear blend skinning,
and point-based animation. All experiments were executed
on a 2.0-GHz dual-processor PC with 2-GB of RAM.

Subdivision. Cloth simulations are often post-processed
with subdivision in order to obtain smoothed folds and wrin-
kles in final renders. Bridson et al. [BFA02] discuss a post-
processing method that handles possible collisions produced
by subdivision. With the BN-Tree, it is possible to test colli-
sions on a highly subdivided surface with a cost possibly as
low as linear in the number of vertices of the control mesh.

We have used Loop’s subdivision scheme in our exam-
ples. Then, the vertices in a surface patch are governed by a
set of control points (up to 12 in our examples) with initial
and deformed positions {xi} and {yi}. It would be possi-
ble to apply our algorithm for normal bound computation
using as governor transformations Ai = 0, ti = yi. How-
ever, we obtained notably tighter bounds by extracting a
best-fit average transformation for every patch. Given initial
and deformed centroids xc and yc, we express the deformed
control points that govern a patch as yi = Axi + ti, with
A = argminA ∑‖yi−yc−A(xi−xc)‖2. The inverse matrix
of the linear system for the least-squares fit can be precom-
puted for each patch.

Since we fit one single transformation per patch, the patch
deformation defined in Section 3.3.1 is simply Ap = A, i.e.,
the best-fit average transformation. For the same reason, the
triangle and differential deformations cancel out, i.e., At = 0
and ∆Ak = 0.

Fig. 1 shows a cloth animation example where we tested
the BN-Tree. The control mesh consists of 231 vertices,
and we performed tests with 2, 3, and 4 subdivision levels.
Fig. 2-left compares the per-frame update and query times
across the whole simulation for 4 subdivision levels, using
the BN-Tree and state-of-the-art hierarchical self-collision
detection [VMT94] (denoted as HSC). We also evaluated the
performance of spatial hashing [THM∗03], but we do not
depict it because it was considerably slower (739 ms/frame
on average). Note that spatial hashing is fully conservative,
while the BN-Tree and our implementation of HSC do not
perform the contour test (See Section 4.1). Fig. 2-right com-
pares the average performance of the BN-Tree against HSC
for various subdivision levels, and the speed-up increases, as
expected, as the number of subdivisions increases. BN-Tree
clearly outperforms when many regions of the cloth are close
to planar, as the update front can remain high in the tree.

Linear Blend Skinning. Fig. 3 shows a comparison of
timings on two different animations of a cat. The cat is ani-
mated with a skeleton with 40 bones, and the triangle mesh
consists of 244735 triangles. Each vertex is governed by up
to 9 bones, using linear blend skinning. In one animation
the cat walks slowly, producing sparse self-collisions, and
the BN-Tree outperforms HSC consistently by a factor of
3. In the other animation the cat runs and jumps and suf-
fers many self-collisions (including large pinching at joints).
The amount of self-collision, together with the lack of tem-
poral coherence, produce sudden changes in the update front
of the BN-Tree, yet it still outperforms HSC, although by a
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Figure 3: On the left, performance comparison between BN-Tree and [VMT94] for a cat animated with linear blend skinning,
in two different situations: walking (middle) with sparse self-collisions, and running (right) with many self-collisions.

smaller factor. These examples show that the BN-Tree pro-
duces large speed-ups, as expected, with sparse contact, and
it becomes comparable to previous methods under dense
and/or non-temporally-coherent contact.

Point-Based Animation. In point-based animation, the
positions of surface vertices are defined using a mov-
ing least squares interpolation of linear deformation
fields [MKN∗04]. Our last example is a teddy bear model
with 26402 vertices animated using point-based animation
with 24 particles (shown in Fig. 4). The figure also shows
the comparison of performance between our BN-Tree algo-
rithm and HSC [VMT94].

6. Discussion and Future Work

We have presented an algorithm for efficiently computing
tight normal bounds for triangulated surfaces governed by
reduced deformations. This algorithm serves as the main
building block for output-sensitive normal-based culling in
hierarchical self-collision detection. Our algorithm relies on
the computation of tight bounds of a triangle’s deformation
gradient. Even though we have applied our algorithm in the
context of self-collision detection, it would be interesting to
evaluate other possible applications.

Our experiments demonstrate that the comparative effi-
ciency of the BN-Tree increases with triangle density, hence
it appears as a good solution for densely tessellated objects.
The BN-Tree also works best in practice for objects with low
curvature in the rest configuration, such as our cloth exam-
ple, because there is higher potential for high-level culling.
In models with relatively high local curvature, the DNC up-
date front is too low, even at levels where the evaluation of
bounds using our algorithm would become the bottleneck.
For that reason, in such cases we simply force the front down
to the leaves. By doing this, we locally treat the BN-Tree
update in a way analogous to the traditional bottom-up up-
date [VMT94]. In the near future, we plan to explore ways to
locally transition to full bottom-up update when the anima-
tion does not exhibit temporal coherence, perhaps by evalu-
ating the amount of inter-frame deformation.

The major limitation of our method is that it is not

fully conservative, as it does not support the contour test.
This test, however, can be regarded as a lower-dimensional
version of the normal test, as discussed by Grinspun and
Schröder [GS01], and it might also benefit from our algo-
rithm. Nevertheless, it remains to test the impact of efficient
bound computations on the overall performance when the
contour test is also considered.

There are many possible avenues for future work, such
as parallelization of the algorithm, addition of continuous
collision detection, or handling of hierarchy updates under
topological changes (i.e., cutting and fracture). It would also
be interesting to explore algorithms for output-sensitive self-
collision detection for other types of reduced deformation
models not currently handled, such as modal analysis or
pose-space deformation.
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