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Abstract

Virtual Reality (VR) applications are employed for creating virtual worlds that are interesting

in several domains. Some of these domains are: industrial design, entertainment, professional

training, among others. The VR applications focused on training programs are a way to instruct

professionals without the need of putting actual people and resources under riskier conditions.

As the goal of these applications is to emulate reality, they have to be user-immersive. That

means that they have to produce realistic response at interactive rates. Nevertheless, creating

a VR aplication is a highly demanding task, its development requires a multidisciplinary team

of professionals, and it also needs specialized tools. In our dissertation we have implemented a

framework for rapid development of VR applications. This framework, called BlenderCave, is

useful for creating VR applications capable of running in distributed, multi-display setups, such

as these that are in CAVEs and Powerwalls.

As several VR applications rely on physics-based simulators, we present some contribu-

tions to enhance them. Specifically, we have designed new algorithms for some of the most

important processing stages that a physics simulator performs. Regarding the simulation stage

that deforms virtual objects, we have developed a fast technique that deforms dense volumetric

objects. This deformation is performed by means of parallelized rasterization of embedding

tetrahedral meshes, using graphics hardware. Enhancing this same stage, we have implemented

a method for simulating coupling between objects that are joined together. In order to illustrate

our method, we have created a haptic demo where complex human anatomy, with several cou-

plings, is simulated interactively. Finally, the last of our contributions addresses the simulation

stage that computes contact handling. Since adhesion is a very common phenomenon in nature,

specially in biological forms, we have implemented a novel method to simulate adhesive con-

tact. Our method robustly simulates adhesion using contact constraints and it is easily integrable

with existing contact handling libraries.
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Resumen

En ciencias aplicadas, uno de los mayores retos es la verificación de hipótesis. Por ello, a

la hora de testear premisas es necesario crear y refinar conceptos, prototipos y pruebas. Los

prototipos sirven para evaluar los nuevos productos y servicios bajo diversas condiciones, entre

ellas los tests de viabilidad y aceptación del público. El problema es que su desarrollo requiere

mucho tiempo y esfuerzo, y necesitan de instalaciones y maquinaria costosas. Los prototipos,

en función de las pruebas a las que sean sometidos, pueden llegar a ser descartados, dañados

o incluso destruidos, implicando un desperdicio de esfuerzo y materiales. Otras actividades,

como el adiestramiento de profesionales, requieren la intervención de personas reales, el empleo

de recursos y el uso de maquinaria real, lo que implica unos costes y riesgos considerables.

Concretamente, el entrenamiento de los profesionales médicos implica aprender y practicar

sobre pacientes reales, con los riesgos que ello supone. Además, ciertas dolencias son difíciles

de reproducir, limitando el aprendizaje que se puede adquirir.

Afortunadamente, gracias al desarrollo de la informática gráfica, ahora es posible crear es-

cenarios y modelos virtuales, lo cual brinda incontables ventajas en numerosos campos. No

solo es posible crear prototipos virtuales, que permiten rápidas pruebas y modificaciones, sino

que también es posible crear simuladores de entrenamiento y sistemas de planificación de resul-

tados. Las aplicaciones de Realidad Virtual (RV), en combinación con los simuladores basados

en físicas, son capaces de emular la realidad. Si bien, para ser completamente útiles han de ser

totalmente inmersivos y dar respuesta al usuario a ritmos interactivos.

Antecedentes

Crear aplicaciones de Realidad Virtual (RV) que además simulen físicas es una exigente tarea

sujeta a la resolución de numerosos problemas. De todos ellos hay tres que se tratan de resolver

19



en esta tesis, y son: Deformación de objetos virtuales, simulación de interacciones de contacto

y composición de escenarios virtuales. Esta sección muestra las técnicas más relevantes que

hasta la fecha han lidiado con estos problemas.

Deformación de objetos virtuales

Muchos objetos de la naturaleza sufren deformaciones debido a fuerzas e interacciones entre

ellos. En esta sección centraremos nuestra atención en la simulación de objetos deformables

elásticos. En informática gráfica hay varias formas de representar un objeto virtual, las dos

representaciones más populares son la malla poligonal y los volúmenes densos de datos.

Deformación basada en mallas poligonales

Una malla poligonal representa la superficie de un objeto virtual, que es la parte que el usuario

ve y la que interactúa con otros cuerpos en la escena. Para representarla se utiliza una estructura

de datos llamada malla poligonal. Esencialmente, una malla poligonal es una colección de vér-

tices, aristas y facetas que representan la superficie exterior de un cuerpo virtual. Este tipo de

representación es muy popular en la informática gráfica, ya que existe hardware específico uti-

lizado para renderizar mallas de forma acelerada. Además, es muy fácil deformar estas mallas,

pues simplemente hay que cambiar las posiciones de los vértices para definir la deformación

producida. Por contra, conseguir gran detalle implica aumentar el número de facetas, lo que

implica utilizar mallas muy densas.

Deformación basada en volúmenes densos de datos

Aunque la representación de objetos mediante mallas poligonales es una técnica muy uti-

lizada, algunos objetos virtuales tienen estructuras internas complejas que serían muy cos-

tosas de representar utilizando mallas. Este hecho dificulta su uso en ciertos entornos, como

el de la informática médica. Las rejillas 3D regulares son una forma muy popular de al-

macenar información volumétrica. Este tipo de representación se utiliza con frecuencia en

imagen médica, ya que es útil para representar las formas biológicas. Estos tipos de estruc-

turas de datos tienen muchas ventajas, como la capacidad de ilustrar las estructuras internas

de un objeto volumétrico de un sólo vistazo. Aunque muchas formas biológicas son inher-



entemente deformables, los algoritmos actuales para visualizar estas estructuras de datos no

están optimizados para datos deformables. Y aunque ha habido muchos enfoques intentando

deformarlas, todas ellas tienen numerosos inconvenientes. Esencialmente, nuestro enfoque uti-

liza la rasterización 3D de tetraedros, que es un algoritmo que toma como entradas el vol-

umen denso de datos original, una malla de tetraedros envolvente y un campo de deforma-

ción aplicado sobre dicha malla. Como salida este algoritmo genera un nuevo volumen de

datos deformado, adaptado a la malla contenedora deformada. Hay varias técnicas de ras-

terización [FLB+09, LK11, LHLW10, FLB+09, SCS+08, EL10], sin embargo nuestro enfoque

combina ideas de todos ellos. El método que proponemos deforma el volumen completo a partir

de mapeado de texturas 3D. También utilizamos un algoritmo de culling para evitar procesar

los voxels que quedan fuera de cada tetraedro rasterizado.

Acoplamiento entre cuerpos rígidos y deformables

Uno de los problemas que se resuelven en esta tesis es la simulación de los objetos virtuales que

están conectados entre si. Utilizamos un enfoque basado en restricciones de contacto, similar

a [SSIF07], que utiliza muelles conectores. Además, empleamos un solver basado en gradiente

conjugado, que resuelve islas de contacto, de forma similar a [PO09]. Respecto a simulación

médica, hay trabajos anteriores que simulan modelos de la mano [SKP08], el cuello [LT06], la

cara [SNF05], el torso [TSB+05, DZS08], o la parte superior del cuerpo [LST09]. Para las de-

formaciones de nuestra demo del hombro se utiliza simulación de elementos finitos, utilizando

formulación co-rotacional [MKN+04]. Para aumentar el rendimiento utilizamos varias mal-

las de distintas resoluciones, unidas mediante una malla envolvente de tetraedros [MBTF03,

SBT06, NKJF09]. Para la resolución del contacto se utilizan restricciones, cuya explicación

viene resumida en el apartado siguiente.

Simulación de contacto

Una de las partes más importantes en la simulación de físicas es la resolución del contacto.

Resolver correctamente el contacto evita las interpenetraciones entre objetos y permite la sim-

ulación de otros efectos como la repulsión, la fricción, la adherencia y muchos otros. Esen-

cialmente, la simulación del contacto se divide en dos componentes: Detección de colisiones,

que detecta intersecciones entre las superficies de los objetos y tratamiento del contacto, que se



encarga de evitar que haya interpenetraciones, es decir, que los objetos queden bien separados

sin intersecar.

Detección de colisiones

Respecto a la detección de colisiones (CD, en sus siglas en inglés), hay un trabajo muy extensivo

en [TKH+05, Sch13]. El objetivo principal de un algoritmo de CD es detectar la intersección

de objetos lo más rápido posible. Este tipo de algoritmos toma como entrada un conjunto de

objetos, y su misión es la de testear cada primitiva de cada objeto contra todas las demás. Por

lo que el número máximo de tests geométricos sería de N2, siendo N el número de todas las

primitivas de todos los objetos de la escena. A fin de minimizar este inmenso número de tests,

un algoritmo de CD se divide en dos fases:

Broad-Phase [CLMP95], que determina rápidamente los pares de cuerpos que potencialmente

están colisionando, descartando rápidamente todos los demás.

Narrow-Phase es la que recibe pares de candidatos a colisionar y se encarga de hacer los tests

geométricos que calculan la intersección exacta.

Hay otras formas de clasificar las colisiones, como es la clasificación temporal, por un lado

están los métodos discretos, que calculan la colisión de los cuerpos en un instante determinado,

y por otro los métodos contínuos [BFA02, RKLM04, ORC07, TCYM09], que son más exhaus-

tivos porque tienen en cuenta las trayectorias de cada primitiva dentro de un lapso de tiempo

determinado. El resultado que genera un algoritmo de detección de colisiones es un conjunto

de datos sobre las primitivas afectadas por las colisiones. Estas después se utilizarán en la etapa

de resolución del contacto, explicada a continuación.

Resolución del contacto

Los métodos de resolución de contacto usan como entrada las colisiones detectadas en la etapa

de detección de colisiones. La misión de esta etapa es eliminar dichas colisiones, dejando a los

objetos bien separados. Si esta etapa no funcionase así, los objetos se atravesarían, causando un

comportamiento muy poco realista. Existen varios enfoques para resolver el contacto, los dos

enfoques más utilizados, por ser los más físicamente correctos, son estos que generan fuerzas

de repulsión que obligan a las partes que colisionan a separarse. En concreto, los dos enfoques



más utilizados son los métodos de fuerzas de penalty [TPBF87, MW88, WVVS90, TMOT12]

y los métodos basados en restricciones [BFA02, DAK04, PPG04, DDKA06, OTSG09].

Penalty-Based Methods:

Los métodos de fuerzas de penalty [MW88,BJ07a,HVS+09a] se emplean en simulaciones inter-

activas. Esencialmente, este método resuelve las colisiones definiendo una fuerza repulsiva que

se aplica a las superficies que están intersecando. Esta fuerza se basa en la profundidad de pen-

etración de ambas superficies. Este enfoque es más impreciso y puede llevar a inestabilidades,

por lo que hay numerosas publicaciones tratando de perfeccionar este método y reducir sus

inconvenientes [FL01, BFA02, HTK+04, HS04, TKH+05, TSIF05, FBAF08, Dru08, AFC+10].

Contact handling constraints

Las restricciones de contacto [Wri02] son un método más robusto y preciso, y garantizan la no

penetración al final de cada paso de simulación. Lo consiguen gracias a formular la respuesta

a colisiones como un problema de optimización con restricciones. Este método está basado en

un sistema lineal de ecuaciones que utiliza multiplicadores de Lagrange. Cada restricción está

definida como una condición que siempre debe cumplirse. De esta forma, cuando el sistema

de ecuaciones es resuelto, las fuerzas de repulsión resultantes son las fuerzas exactas a aplicar

sobre las superficies que intersecan. Hay varios tipos de algoritmos de restricciones de contacto:

Los iterativos [BFA02, GBF03a, MHHR06], que son más sencillos pero menos exactos, ya que

resuelven localmente las restricciones una a una, y los LCP [CPS92] (Linear complementarity

Problem), que resuelven todas las restricciones a la vez, por lo que son más robustos y mucho

más exactos, a costa de ser más costosos computacionalmente. De todos los tipos de LCP, en

muchas de nuestras pruebas hemos utilizado anticipación iterativa de restricciones [OTSG09].

Fricción

La fricción, también llamada rozamiento, es una fuerza que se opone al deslizamiento tan-

gencial entre dos superficies en contacto. Si esta fuerza no existiese, las superficies podrían

deslizarse sin ninguna resistencia, como sobre hielo. Sobre la fricción existen trabajos anteri-

ores en los que se simula rozamiento en cuerpos rígidos [Lot84, Bar91, ST96, ST00, KEP05],

cuerpos articulados [AP97, KSJP08] y cuerpos deformables [BFA02, WVVS90].



Contacto adhesivo

La adherencia es el fenómeno en el cual dos superficies en contacto se quedan parcial o to-

talmente pegadas. Este fenómeno consiste en una fuerza de dirección normal a las superficies

que se opone a las fuerzas de tracción que intentan separarlas. La adherencia proporciona

más realismo y riqueza a las simulaciones físicas, especialmente en superficies húmedas, es-

tructuras biológicas, mucosas, etc... Como la adherencia está íntimamente unida al fenómeno

de contacto, se ha modelado este fenómeno como una formulación basada en restricciones.

Dicha formulación está conectada a un algoritmos LCP de resolución de contacto. En grá-

ficos por computador, la adherencia ha sido modelada anteriormente utilizando fuerzas de

penalty [JL93, CJY02, BMF03, WGL04, SLF08]. En el campo de la mecánica, la adherencia

fue formulada por Fremond [Fre87], mientras que Raous et al. [RCC99] estableció una relación

entre la termodinámica y la adherencia. Un sumario de estos enfoques pueden ser encontrados

en el libro de Wriggers [Wri02]. Nuestro enfoque adapta todas estas ideas para crear un algo-

ritmo que simula la adherencia en gráficos por computador. Además, nuestra implementación

es muy robusta, ya que utiliza restricciones de contacto para modelar la adherencia. Además,

nuestro enfoque es válido para simulación de adherencia en rígidos y deformables y se puede

integrar en otras librerías de resolución de contacto existentes, como [BUL, ODE, SOF].

Desarrollo de aplicaciones de RV

Como ya hemos visto, el desarrollo de aplicaciones de RV es un proceso conocido por ser

muy exigente y cargado de complejidad. Esta tarea no solamente requiere de una gestión de

dispositivos avanzada y de algoritmos de simulación avanzados, sino que también demanda el

uso de herramientas especializadas de prototipado rápido. Dichas herramientas son útiles para

crear los objetos y escenarios virtuales de la aplicación. También es necesario configurar los

objetos de forma que la simulación se inicie en un estado seguro y libre de interpenetraciones.

Además, las aplicaciones de RV diseñadas para entornos multipantalla, como las cuevas de real-

idad virtual, o CAVEs [CNSD93], suponen retos añadidos. Al ser necesario generar fotogramas

de más resolución y tener una consistencia de brillo similar [Sto01] entre pantallas. Existen

algunas soluciones específicas para el desarrollo de aplicaciones de RV destinadas a CAVEs.

Un ejemplo de ellas es la librería CAVELib [CN95], creada por los inventores de las CAVEs



pero limitada para su hardware específico. Hay otros frameworks, como por ejemplo VRJug-

gler [BJH+01], DIVERSE [KSA+03], Studierstube [SRH03], RB2 [VPL90], DIVE [CH93],

dVS [Gri91], Avocado [Tra99], VRPN [THS+01], Equalizer [Equ], MRToolkit [SLGS92],

dVise [Ghe97], EAI’ Wordltoolkit [Ini97], EON Studio™ [Eon] o INVRS [Ant09]. Respecto al

desarrollo de videojuegos, existen también varios motores de juegos que podrían adaptarse para

funcionar en cuevas de realidad virtual, como por ejemplo [OGR,OSG,Epi,Cryb,Unib]. Final-

mente, existen herramientas tipo sandbox que permiten la creación de contenidos y la definicion

de la lógica de la aplicación utilizando editores visuales.

Objetivos

Los objetivos de esta tesis se organizan en dos grupos: por un lado se incluyen nuevas técnicas

para el desarrollo rápido de aplicaciones de RV. Por otro lado se han desarrollado mejoras para

las simulaciones físicas en las que participan objetos deformables.

Respecto a la creación rápida de aplicaciones de RV, se ha desarrollado un framework lla-

mado BlenderCave. Este framework incluye herramientas visuales que sirven para crear nuevos

objetos y escenarios virtuales. Dichas herramientas están inspiradas en las que se utilizan en

el desarrollo de videojuegos. Además, hemos diseñado un protocolo de sincronización de red

que permite a las aplicaciones funcionar en entornos distribuidos multipantalla, como son las

cuevas de realidad virtual (CAVEs) y las pantallas PowerWall.

Respecto a las contribuciones para mejorar los simuladores físicos actuales, se han desarrol-

lado algoritmos que enriquecen la etapa en la que se calculan las deformaciones de los objetos

y también nuevos métodos para la etapa de resolución del contacto entre superficies.

Respecto a la fase de deformación de objetos virtuales, presentamos un algoritmo que de-

forma objetos volumétricos densos de forma interactiva. Dicho algoritmo es capaz de deformar

millones de voxels mediante rasterización de mallas de tetraedros. Esto se consigue mediante

el uso de hardware gráfico y de una elevada paralelización a nivel de voxel.



Mejorando esta misma fase, se ha implementado un método que simula acoplamientos entre

los objetos que están unidos entre sí. A fin de ilustrar dicho método, se ha creado una demo

háptica destinada a explorar la anatomía humana, donde los acoplamientos están simulados in-

teractivamente.

Finalmente, con respecto a la etapa de resolución del contacto, también se incluye un nuevo

método que simula contacto adhesivo. Este método es muy robusto porque modela la adherencia

a partir de definir restricciones de contacto. Dicho algoritmo genera efectos muy interesantes

y puede ser integrado en las librerías de resolución de contacto existentes, como [BUL, ODE,

SOF].

Metodología

El empleo de herramientas de prototipado rápido, unido a nuevos algoritmos de deformación

de objetos y tratamiento del contacto, pueden aumentar el realismo de aplicaciones de RV que

simulan la física de objetos deformables.

Para respaldar esta tesis, los próximos capítulos presentarán las siguientes contribuciones,

las cuales mejoran la creación de aplicaciones de RV y el funcionamiento de los simuladores

basados en físicas:

1. Se ha desarrollado un método para deformar objetos volumétricos de forma interactiva.

La deformación se consigue mediante rasterización de una malla de tetraedros envolvente. Di-

cho método está acelerado por hardware gráfico y es capaz de deformar millones de voxels por

segundo. Para demostrar su funcionamiento se ha creado una demo interactiva de palpación

médica de un abdomen humano. Todos los detalles de esta contribución se pueden encontrar en

el capítulo 3, así como en la publicación [GEP+13].

2. Se ha diseñado un algoritmo para simular contacto adhesivo entre superficies de objetos

virtuales. Este es un método muy robusto que define la adherencia de forma unificada, uti-

lizando restricciones de contacto. Todos los detalles de este algoritmo se pueden encontrar en

el capítulo 4, así como en la publicación [GZO10].



3. Se ha implementado un sistema para configurar una demo interactiva de palpación médica

de un hombro humano. Esta demo muestra toda la anatomía interna del hombro, incluidos sus

huesos, músculos y ligamentos más importantes. Se han empleado herramientas visuales que

han permitido configurar las características mecánicas de cada órgano, así como los puntos

de acoplamiento entre unos órganos y otros. Asimismo, se ha configurado toda la escena vir-

tual para que la simulación comience en un estado seguro y libre de colisiones. Todo este

sistema se apoya en herramientas visuales y scripts que realizan tareas específicas. En la publi-

cación [OGG+10] y en el capítulo 5 se explican todos los detalles del proceso realizado.

4. La creación de aplicaciones de RV es una tarea muy exigente. Dicho proceso necesita

de un equipo multidisciplinar y herramientas especializadas. Para facilitar esta labor, se ha

implementado un framework para el desarrollo rápido de aplicaciones de RV. Este framework,

conocido como BlenderCave, combina herramientas visuales con un motor de juegos muy po-

tente y versátil, en constante desarrollo. BlenderCave es útil para crear aplicaciones de RV que

funcionan incluso en entornos distribuidos multi-pantalla, como los que se pueden encontrar en

CAVEs y Powerwalls. En la publicación [GBEO11] y en el capítulo 6 se muestran todas las

características de este framework.

Conclusiones

Desarrollar aplicaciones de RV es una de las tareas más complejas conocidas por toda la in-

dustria del software. Ello se debe a que estas aplicaciones tienen que lidiar con algoritmos

de simulación muy complejos, también tienen que gestionar todos los objetos virtuales y sus

estructuras de datos adjuntas (mallas, texturas, animaciones, etc...), y además tienen que inter-

actuar con periféricos de entrada salida (dispositivos hápticos, pantallas y cascos de realidad

virtual, etc...) a una velocidad suficiente para funcionar a ritmos interactivos. Todos estos de-

safíos requieren el uso de herramientas altamente especializadas y de un equipo multidisciplinar

capaz de utilizarlas.

En esta tesis se muestran nuevas herramientas para acelerar la creación de aplicaciones



de RV. Todas las herramientas están integradas en un framework, llamado BlenderCave, que

permite crear aplicaciones completas de forma muy rápida. Además, se ha desarrollado un

protocolo de sincronización de red que habilita a estas aplicaciones para funcionar en entornos

distribuidos multi-pantalla, como los que encontrados en CAVEs y PowerWalls. A pesar de sus

bondades, BlenderCave tiene algunas limitaciones: El protocolo de red desarrollado es muy efi-

ciente para sincronizar cambios de estados producidos por eventos, pero necesitaría de mejoras

para cambios más complejos, como los producidos en las simulaciones físicas de objetos de-

formables. Otro punto a perfeccionar sería el reparto de carga en configuraciones en las que la

relación entre pantallas y nodos de ejecución no está balanceada equitativamente. No obstante,

muchos de estos problemas son específicos de la aplicación a ser desarrollada y en ese nivel

pueden ser resueltos. Respecto a las líneas futuras, BlenderCave fue liberado como software

libre y desde entonces está siendo desarrollado muy activamente por varios grupos de investi-

gación europeos.

Esta tesis también ofrece innovaciones que mejoran los simuladores físicos existentes. En

concreto, nos hemos centrado en las etapas de deformación de objetos y de resolución de con-

tacto. Respecto a la deformación de objetos virtuales, una de nuestras innovaciones consiste

en un algoritmo de deformación de objetos volumétricos. Este algoritmo está altamente par-

alelizado y utiliza hardware gráfico, lo que le permite deformar millones de voxels a ritmos

interactivos. Además, el algoritmo cuenta con una técnica de culling que aumenta la velocidad

de rasterización en hasta 1.5x veces, dependiendo de la demo. Para ilustrar dicho algoritmo se

ha creado una demo interactiva de palpación médica del abdomen humano. El método desar-

rollado es muy prometedor pero no está carente de limitaciones: el actual algoritmo de culling

da lugar a falsos positivos. Afortunadamente, estos falsos positivos no dañan excesivamente el

rendimiento general del algoritmo. Otra limitación es el ligero desenfoque provocado por la ras-

terización de voxels, que podría mitigarse con métodos de filtrado más costosos pero con mejor

calidad. Hay algunas líneas futuras que serían interesantes de desarrollar, como por ejemplo la

utilización de hexaedros como elementos contenedores, entre otras.

En esta misma etapa de deformación de objetos, se ha diseñado un método para simular

acoplamientos entre objetos virtuales que están unidos entre sí. Esta situación es muy común



en anatomía humana, donde órganos de diferentes características (huesos, músculos y ligamen-

tos) están conectados y donde pueden suceder situaciones de contacto complejas de resolver.

El algoritmo desarrollado resuelve estas situaciones de forma unificada, calculando las nuevas

posiciones de los órganos para que estén libres de colisiones. Actualmente nuestra técnica tiene

algunas limitaciones: Otra limitación se debe a las aproximaciones que utilizamos, que alejan

la demo de ser anatómicamente exacta. Asimismo, hay órganos, como la bursa, que han sido

omitidos, pues de otra forma se dispararía el número de contactos a resolver y la demo dejaría

de ser interactiva. Por otro lado, hay muchas líneas futuras que se podrían seguir, como la in-

clusión de corte de órganos y la sutura, lo que implicaría implementar soluciones para lidiar con

cambios topológicos y con contacto con hilo de sutura.

Respecto a la etapa de resolución del contacto, se ha implementado un algoritmo para sim-

ular contacto adhesivo. Este tipo de contacto es interesante porque es muy frecuente en la

naturaleza, especialmente entre mucosas y otras estructuras biológicas. Nuestro método utiliza

restricciones de contacto para calcular la adherencia, por lo que es muy robusto. Sin embargo

no está carente de limitaciones: Respecto a la conexión entre adherencia y fricción no hemos

encontrado ningún modelo termodinámico en la literatura existente, lo que hacemos en su lugar

es aplicar la fuerza más restrictiva de las dos. Otra de las limitaciones es que se requiere alma-

cenar la historia de los contacto ocurridos, a fin de poder calcular la evolución de su adherencia

en el tiempo. También hay que comentar que hay problemas de convergencia, ya conocidos,

que sufren los solvers utilizados, lo que nos impide garantizar una tasa de actualización mín-

ima. Otra limitación es que el algoritmo solamente puede calcular adherencia en superficies

bien definidas, lo que significa que aún no se puede aplicar en fluídos simulados ni en otros

tipos de entidades. Como trabajo futuro, sería muy interesante aplicar nuestro método a otro

tipo de materiales, como por ejemplo los viscoplásticos.

Finalmente, destacar que el desarrollo de aplicaciones de RV que simulen físicas es un prob-

lema muy complejo, pues quedan multitud de desafíos aún no resueltos. Aunque los resultados

de esta tesis muestran que nos dirigimos hacia mejores herramientas y procesos, aún estamos

lejos de conseguir animaciones indistinguibles de la realidad, suponiendo que ello sea posible.
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Chapter 1

Introduction

One of the greatest challenges in applied sciences is how to evaluate and how to verify hypoth-

esis. In this way, in order to check premises it is necessary to develop concepts, prototypes and

other kind of tests, and to make refinements afterwards. Disciplines like architecture, commerce

and industrial engineering have relied on mock-ups in order to evaluate designs, behaviors and

acceptance under specific conditions. The development of these prototypes often requires the

use of expensive processes, facilities and machinery. In order to check performance, robust-

ness and durability, some parts of the prototypes need to be manufactured employing expensive

materials. Frequently these parts are fatigued, damaged or destroyed in the process, specially

in durability tests of engines or in crash tests of vehicles. Several industries require expensive

structures only to test one or few properties. That happens, for instance, in aeronautics and au-

tomobile industries, that require the use of wind tunnels and other expensive facilities in order

to test and refine aerodynamics. Architecture and commerce require regulatory compliance and

acceptance tests, usually from long and expensive market studies before refining the prototypes

and beginning the production. Regarding design acceptance, usability and other characteris-

tics, some of the prototypes are designed for the interaction with humans. As result, several

of these prototypes are discarded or replaced by others, and unfortunately, the manufacture of

these mock-ups requires several resources and time.

Other activities, like training for professionals who use heavy machinery, imply expensive

and dangerous training programs because they have to use the actual machinery under real cir-

cumstances. That requirement implies working under riskier conditions, that demand higher

costs and taking unnecessary threats. Other kinds of learning, specially training programs fo-
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cused on surgeons and other medical professionals, require operating on living patients, which

leads to additional risks over their lives and integrity. Moreover, some diseases are rare or hard

to reproduce, making harder the learning of their recovery procedures. Finally, operating on

cadavers or other specimens requires preservation facilities and other expensive equipment.

Fortunately, thanks to the increasing computation power of modern computers, the de-

velopment of new design techniques like Computer-aided design (CAD) and disciplines like

Computer-generated imagery (CGI), it has been possible to create virtual models of the prod-

ucts to be developed, saving time and resources. The use of virtual models of a product has

many advantages: not only is possible to evaluate the design and appearance of a model before

building it, but also is easier and cheaper to perform modifications, frequently in an interactive

manner. Recently, with the appearance of new human-machine interfaces and haptic manipu-

lators is possible to create immersive scenarios for potential users to operate virtual tools and

to manipulate virtual objects. The innate consequences of this new technology, called Virtual

Reality (VR), are revolutionary: Not only is possible to develop powerful immersive training

applications, that provide a faster and more complete learning for professionals, but also it

provides new procedures for interactive prototyping and huge savings of time and resources. In

figure 1.1 we can find several domains where virtual reality is successfully employed nowadays.

Figure 1.1: Examples of applications where Virtual Reality is successfully employed.
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The development of physics-based numerical simulators brings to the VR users several new

possibilities. Not only they give to engineers powerful tools to evaluate robustness and other

characteristics of the model and its components, but also they give a realistic way to produce

physics-based accurate animations of bodies, frequently at interactive rates. These simulators

have the capability to emulate real-nature physics in order to simulate forces, velocities, tem-

peratures and other magnitudes. There is a wide range of simulators depending on the kind of

objects and magnitudes to be simulated. The kind of simulator that we use for our demos is

able to compute forces and interactions between rigid bodies and deformable models. For each

object, it can predict effects like forces, accelerations, velocities and positions. In addition, for

deformable objects it also can compute stress, strain and deformations. In order to deal with

interactions between objects, a simulator has several components, like collision detection al-

gorithms and contact handling methods. As result they are able to simulate accurate contact

simulation, repulsive forces to have all the objects well-separated, friction and other effects.

Finally, more advanced simulators can compute interaction between solid or deformable

objects and fluids, like air flow, smoke or water. As result, with these simulations is possible to

reproduce the behavior of virtual models as if they were real, before/instead of building them in

real scale.

There are several commercial simulators focused on training professionals in activities like

vehicles and heavy machinery driving, manipulation of dangerous goods or surgery training

for medical professionals. These technologies are also useful in the entertainment industry.

Currently is very common to find physics-based simulators used for the generation of impressive

visual effects in films and video games, in most of them we can find simulations of fluids, fire,

smoke, fragmentation of objects and many more, as shown in figure 1.2.

This dissertation is mainly focused on medical training VR applications. These training ap-

plications allow professionals to practice virtual surgery operations, like palpation, manipulat-

ing haptic tools over simulated organs. With the aid of these applications is possible to practice

surgery exercises of cases that might be difficult to reproduce in real world. For instance, there

exist simulators that implement a complete solution for arthroscopic surgery training, as shown

in figure 1.3. Thanks to these applications, professionals can improve their skills doing exer-

cises and reproducing specific cases, using almost the same tools applied to real arthroscopic

interventions. Each exercise has performance evaluation tools built-in, allowing to measure the
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Figure 1.2: © Warner Bros Pictures. In these two scenes of the film Pacific Rim (2013) we

can find simulations of rigged articulated bodies (left) and rigged soft bodies with simulation of

virtual muscles (right). In this film both characters are animated by simulation of physics while

they interact with other fluid simulations, like water, rain and smoke.

performance and expertise of each professional. Other set of VR tools applied to medicine

are the planning applications. This kind of systems allow to predict the effects of a medical

treatment over a patient without compromising his/her integrity. These planning applications

are extremely useful and can save lives, as they can compute the correct treatment doses to be

applied to the patient according the characteristics of his/her disease. Some examples of plan-

ning medical applications can be found in radiotherapy, because they can compute the correct

amount of radiotherapy dose that has to be applied to the tissues affected by cancer.

In order to have a completely immersive simulator, we need some requirements to be ac-

complished, like a virtual scenario populated with highly detailed virtual assets. They also have

to be animated in a physically realistic manner at interactive rates. If some of these conditions

are not met, the sense of immersion is lost and the application becomes useless.

Developing this kind of applications implies the accomplishment of many challenges, not

only it is necessary to model (or to capture) all the virtual assets required in the scene, but also

it is necessary to define their mechanical properties. Many performance and behavior settings

need to be adjusted and these requirements take time and several tests before finding an accurate,

robust and fast enough simulation. A graphics rendering engine is required for rendering all the

objects in the scene and showing a visual response to the user. In addition, a physics simulator

is needed to simulate the behavior of each virtual body and to solve the interactions between all

the simulated objects. Typically this kind of interactions are solved using a collision detection
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Figure 1.3: © GMV. Insight: Shoulder arthroscopic simulator designed for training arthroscopic

surgery (left). Radiance: IORT Radiotherapy planner designed for computing the correct radio-

therapy dose after a surgical removal of a tumor (right).

algorithm, -that detects intersections between objects-, working in tandem with a contact solver,

-that computes repulsion forces in order to eliminate those intersections detected before-. All

of these algorithms are designed carefully to solve these interactions in a robust manner at

interactive rates.

This dissertation is focused on two problems: simulation of deformable objects and fast

development of VR applications that simulate them.

We will then briefly present our contributions and outline the contents of this thesis.

1.1 Volumetric representation of 3D objects

Typically, in Computer Graphics, a virtual object is represented by its surface. This surface is

what the user sees and it is the part of the object that interacts with other objects. The surface of

an object is represented by a polygon mesh, which essentially is a collection of vertices, edges

and faces. Polygonal meshes have several advantages: they are able to render fast because there

exist specialized hardware, and they can be deformed easily. Nevertheless, biological structures

have internal structures with several details inside, as shown in figure 1.4. Actually, it is not

practical to represent these objects using polygonal meshes, and instead we use volumetric

representations.
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Figure 1.4: Some volumetric examples from Stefan Roettger’s volume library. All of these

models are captured from real specimens.

There exist algorithms to represent these dense data volumes, using raytracing techniques

for visualization. Fortunately, these techniques allow not only to display the complete volu-

metric object but also it is possible to discriminate parts of it showing only specific structures

inside. Unfortunately, these rendering algorithms are not optimized for the representation of de-

formable volumes. In order to fix this problem, we have implemented a novel 3D rasterization

algorithm that generates new deformed volumes.

1.2 Simulation of adhesive contact

It is necessary to simulate interactions between objects in a robust manner. To that end it is nec-

essary to detect contacts between objects and solve them in order to prevent interpenetrations.

Otherwise, some objects could go though each other, producing an unrealistic behavior. Typi-

cally, contact solving methods require collision detection algorithms. These algorithms detect

geometrical intersections between the primitives of the surface of each virtual object. The more

detailed virtual objects are, more intersection tests have to be performed, because there is a test

between each pair of primitives. The maximum number of geometric tests is N2, being N the

number of primitives of all the objects in the simulation. Modern collision detection algorithms

use one or more culling algorithms, aimed to discard tests between false positives as fast as

40



possible. The most popular techniques are based on bounding volume hierarchies (BVH) or in

spatial partitioning. BVH algorithms consist in bounding parts of each model inside volumes

like Spheres, Axis Aligned Bounding Boxes (AABBs), Oriented Bounding Boxes (OBBs) or

other kind of more complex volumes. Essentially, two primitives are free of collision if they be-

long to two bounding volumes that do not intersect, so the geometric test between them can be

avoided (culled). If two volumes do not intersect, it is not necessary to check collision between

their children volumes. Spatial partitioning works in a similar manner, but in this case the space

is partitioned in a grid, that can be regular or not. Primitives that are in different grid cells do

not collide, so geometric intersection checks between them can be avoided.

When two objects are in contact, the next step consists in performing collision detection

between every primitive of those objects, following the same techniques introduced before.

After that, each detected collision is sent to the contact handling algorithm, which computes

repulsion forces in order to separate the affected primitives. A robust contact handling method

is capable of preventing all the detected interpenetrations.

A popular manner to compute the exact forces to prevent collisions is using constrained

contact handling. This method formulates and solves a constrained optimization problem. Each

intersection is a kind of constraint, that is, a mathematical element that determine conditions

that always have to be met. In this way, when the problem is solved, the exact repulsion forces

are computed and the affected objects finish the current time step remaining well-separated and

free of interpenetrations.

There are other interesting phenomena related to the contact itself, like friction. Friction is

a force that opposes to tangential movement between contacting surfaces and it is explained in

detail in subsection 2.2.3.

Another interesting phenomenon in relation to contact is adhesion. Adhesion is a potential

energy produced by the contact between sticky surfaces. This energy produces a force that

opposes to traction forces that might try to separate or slide the glued surfaces. In figure 1.5

we can see some examples of sticky objects in the real world. Adhesion is also present in the

human skin, because of the existence of humidity on its surface.

Adhesion is a very common phenomenon in nature, and it provides additional realism and

richness to physics-based animations. Adhesion is present where biological structures are in-

volved, like wet surfaces, mucous membranes and others. As far as we know, our adhesion
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Figure 1.5: Some examples of adhesion phenomena in the real world.

model is the first physically based model to be applied to computer graphics simulations.

Essentially, adhesion is a potential energy stored between two surfaces in contact. This en-

ergy increases when these surfaces are compressed against each other, and it decreases when

there is traction or sliding between both surfaces. When adhesion energy is completely dissi-

pated those surfaces are separated.

In this dissertation, an algorithm to simulate adhesion is formulated and implemented. In

addition, our method is designed for its easy integration in other constrained-based contact

handling algorithms.

1.3 Authoring of virtual reality applications

The development of VR applications is a multidisciplinary process well-known to be complex.

A VR application requires the most efficient algorithms and a set of components (also called

engines) that manage hardware devices, graph scene, rendering of virtual objects, physics sim-
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ulation and many others. In addition, the creation of assets demands the use of rapid authoring

tools. These tools are useful for modeling, texturing, animating and configuring each virtual

body, and for compositing the entire scene. One of the problems that implies the use or third

party tools is the exchange of information between the VR application and the used tools, in

this way the use of exportation scripts allows the conversion of the original file format of each

asset to the application’s native format. After that, a stack of tests is required in order to find

the most adequate mechanical parameters for each object, just like for obtaining an interactive,

plausible simulation.

In other activities, like development of video games, a set of tools called sandboxes are

becoming quite popular, specially for providing a powerful set of tools that accelerates the

composition of each game level. Taking these ideas as inspiration, we have developed a fast

prototyping framework, called BlenderCave. BlenderCave is a visual tool, based on a popular

modeling suite, that provides a very fast pipeline for creation of VR applications. Detailed

information about BlenderCave is shown in chapter 6.

Authoring tools, like 3D modeling suites, are specially useful for configuring the assets

used in the VR application. Thanks to these tools, we created a set-up to configure the virtual

muscles, bones and ligaments of our human shoulder demo, shown in chapter 5.

With these tools, it is possible to configure the initial state of each object in order to keep

them well-separated from each other at the beginning of the simulation. Otherwise the simulator

could not start in a safe configuration and the contact handling routines could not perform

properly at all.

1.4 Contributions of this Thesis

The goals of this dissertation are: the development of techniques for easing the creation of VR

applications and new contributions to improve the behavior of deformable bodies in physic-

based simulations.

Regarding the rapid creation of VR applications, we have developed a framework called

BlenderCave. This framework includes tools that are inspired from the ones employed in the

state-of-the-art video game development. In addition, we have designed a network synchroniza-

tion protocol for enabling these applications to work in distributed multi-display systems.
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With respect to our contributions for improving physics-based simulations, in this thesis we

have made some advances in specific processing stages of a simulator. Specifically we have

designed algorithms that enrich the stages of object deformation and contact handling.

Regarding the objects deformation stage, we show an innovation consisting in a parallelized

algorithm that deforms dense volumetric objects. This algorithm employs graphics hardware

and is able to deform millions of voxels by rasterization of tetrahedral meshes. Enhancing this

same stage, we have implemented a method that simulates coupling between objects that are

joined together. In order to illustrate our method, we have created an interactive haptic demo

for exploring human anatomy, where many couplings are simulated interactively.

Finally, with respect to the contact handling stage, we include a novel method to robustly

simulate adhesive contact, using contact constrains. Our algorithm can be integrated in existing

constrained contact handling libraries, like [BUL, ODE, SOF].

The following thesis statement summarizes the contributions of this dissertation.

1.4.1 Thesis statement

The employment of fast prototyping tools, joined with new algorithms of collision detection and

contact handling, can improve realism and efficiency of VR Applications that simulate physics

of deformable objects.

To support this thesis, the next chapters will present the following contributions:

1. A method to deform dense data volumes interactively (chapter 3). In this chapter we in-

troduce a fast method for hardware-accelerated rasterization of volumetric objects. This method

is interactive and capable of deforming millions of voxels per second. In order to demonstrate

its performance and applications, an interactive demo with a volumetric human abdomen has

been implemented.

2. A fast algorithm that implements adhesive contact between surfaces. This unified method

is based on contact constraints, bringing more realism and robustness to the interactions between

objects (chapter 4). This technique is robust and it can be integrated in existing constrained

contact handling libraries easily.

3. A set-up system that allows to configure each parameter of our interactive demo for

shoulder palpation, applied to medical purposes (chapter 5). In this chapter a medical palpation
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demo of the human shoulder is presented. This medical application has all the human shoul-

der organs (bones, ligaments and muscles) configured with diverse mechanical parameters. In

order to define all the contact couplings present between organs, a complete set-up system is

implemented. In this way we use a visual modeling tool to define all of these parameters and

to deform the organs in an initial pose to start the simulation in a safe, collision-free config-

uration. In addition, a set of exportation scripts have been implemented to make our set-up

inter-operable with the demo. Finally, our shoulder demo has support for haptic tools and it is

designed to be fully interactive.

4. A framework for fast authoring of Virtual Reality (VR) applications for CAVEs and other

multi-display devices (chapter 6). This chapter presents a new visual tool for quick development

of applications. This suite combines a game engine and several integrated tools that ease the

deployment of VR applications in distributed multi-screen environments.

1.4.2 List of publications

Fortunately, all the contributions presented in the next chapters have been successfully pub-

lished in notorious conferences. Some of our contributions were published in international

conferences like the ACM SIGGRAPH / Eurographics Symposium on Computer Animation,

an others were published in national conferences, like the Congreso Español de Informática

Gráfica (CEIG). We show details about all of these publications in the following paragraphs:

1. Our method to deform dense data volumes interactively, described extensively in chapter

3, was published in [GEP+13].

2. Our algorithm to simulate adhesive contact between surfaces, explained in chapter 4, was

published in [GZO10].

3. The framework we have developed for the authoring of a human shoulder medical demo,

shown in chapter 5, was published in [OGG+10].

4. BlenderCave, our tool for fast creation of distributed VR applications, explained in chap-

ter 6, was published in [GBEO11].
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1.5 Outline

In the next chapter we present previous work done in the fields of collision detection, contact

solving and development of VR applications.

The rest of the thesis will focus on describing and analyzing our contributions.

Chapter 3 presents our novel method for deforming volumetric objects, using an accelerated

rasterization algorithm.

Chapter 4 describes an algorithm to simulate adhesive contact between surfaces, using ro-

bust techniques based on constrained contact handling.

Chapter 5 presents a framework that we have developed for the authoring of a human shoul-

der demo designed for medical palpation.

Chapter 6 presents our distributed Rapid Application Development (RAD) tool that we have

implemented for fast creation of VR applications for CAVEs and other multi-display devices.

Finally, Chapter 7 discusses the results and future lines of work.
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Chapter 2

Related work

Virtual Reality (VR) applications that simulate Physics is a demanding domain that tries to

solve many problems, three of them that are very important are: Deformation of virtual objects,

simulation of interactions between objects with different properties (rigid, deformable) and in-

tegration of assets into VR applications using authoring tools. This chapter discusses the most

relevant techniques developed in the past that deal with these problems.

2.1 Deformation of virtual objects

Every object in nature suffers deformations due to forces and interactions with other objects.

The deformation degree depends on the material stiffness of the object, therefore a very stiff

material could suffer not readily apparent deformations although the applied forces were high.

Soft materials, on the other hand, can be deformed easily by the action of forces and other

interactions. Among the types of deformable objects, we call elastic objects the bodies that

recover their original shape after these deforming forces disappear, and the so called plastic

objects are those that cannot recover totally their original shape after the effects of forces are

gone. Most of the deformable bodies in nature are a mixture of these two types, depending on

the magnitude of the forces applied over them, so a body could have an elastic behavior under

small forces and suffer plastic deformations if the applied forces overpass a specific threshold.

Although we can find more details about general deformation modeling [NMK+05], or

modeling of cloth [HB00, CK05], in this section we will focus exclusively on the deformation

phenomenon itself, regardless of the kind of deformable object we are taking into consideration.
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In Computer Graphics, there are several ways to represent a virtual object, two of the most

popular techniques are polygonal meshes and dense volumes of data. In the next subsections

we will explain their characteristics and how they can be deformed.

2.1.1 Deformation based on surface meshes

The surface is the part of the object the user sees and the part that interacts with other objects.

Essentially, a polygonal mesh is a collection of vertices, edges and faces that represent the

external shape of a body. The vertices are points with a position in 3D space, each edge relates

two vertices and it is drawn using a line that joins them. Finally, each face is a plane that is

limited by three edges (triangular) or four edges (quadrilateral), in figure 2.1 we can see an

example of a triangular mesh.

Figure 2.1: An example of a surface mesh: Stanford Bunny

Polygonal meshes have many advantages, since the shape of the mesh is defined by the

positions of its vertices, only a change in the coordinates of some of them is needed to produce

a deformation. Deformation models can perform this task computing new positions of vertices

in a realistic manner.

The polygonal mesh is a definition quite popular in Computer Graphics and it is extensively

used in VR applications and video games. Most of the efforts done in Computer Graphics

are focused on increasing the rendering speed, realism, richness and interactivity of this kind

of representation. In addition, dedicated acceleration hardware is available to speed-up the

rendering of bodies defined by polygonal meshes. Nevertheless, the representation of highly

detailed objects involves the definition of highly tessellated meshes, and that demands high
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computation power for rendering all of these triangles at interactive rates. Fortunately, modern

Graphics Processing Units (GPUs) allow the parallelized processing and display of millions

of triangles per second. In addition modern models of GPUs are programmable, allowing the

execution of specific programs (shaders) that manipulate every single property of the geometry

to be displayed.

2.1.2 Deformation based on dense volumetric data

Although polygonal meshes are a popular technique for rendering virtual objects, some entities

have internal complex structures that would be difficult or very expensive to represent by this

manner. Regular 3D grids are a popular way to store dense volumetric data, like biological

forms, notably in medical imaging. These types of data structures have many advantages, like

allowing to illustrate the internal structures of a volumetric object in a single view (Figure:

2.1.2).

Figure 2.2: A dense volume of data representing a human torso. This data was captured by to-

mography from a real patient (left). 3D grids allow to store all the internal structures and organs.

Thanks to visualization algorithms based on raycasting it is possible to select the information

to be illustrated (center and right).

Although many forms are inherently deformable, current volume visualization algorithms

are not optimized for deformable data grids. On the other hand, there are many application fields

where it might be convenient to deform volumetric models interactively, like surgical planning

and animation of volumetric characters (figure: 2.3).
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Figure 2.3: Applications of interactive volumetric deformation: Surgical planning (left) and

animation of volumetric characters (right).

There have been several approaches to obtain deformable volumetric data. One of the most

popular techniques consists in the segmentation and creation of surface meshes using the volu-

metric materials as input, since polygonal meshes are easier to manipulate. Unfortunately, cur-

rent segmentation algorithms are not accurate enough and human manipulation is still required.

Automatic segmentation is, in general, a hard and unsolved problem. Another drawback of the

segmentation is the noticeable loss of detail in the resultant polygonal mesh in relation to the

original data grid.

Moreover, there exist other approaches to deform dense volumes, like 3D tetrahedra ras-

terization. Essentially, 3D tetrahedra rasterization is an algorithm that takes as inputs an un-

deformed data grid, an embedding tetrahedral mesh and a deformation field discretized on the

mesh; as output it generates a new deformed data volume adapted to the deformed embedding

mesh.

Our approach for 3D rasterization is based on previous rasterization techniques. Rasteriza-

tion of geometric primitives to a grid data structure is a largely studied problem, as it constitutes

a key element of current GPU rendering algorithms [FLB+09, LK11]. They rasterize triangles

into a 2D grid, and there are mainly two approaches to parallelize the process.

One approach is to parallelize on a triangle basis. Each processor handles one triangle,

computes an axis-aligned bounding box (AABB) around the triangle, and then processes inter-

nal pixels testing for inclusion in the triangle [LHLW10, FLB+09]. The second approach is to

parallelize on a tile basis. A first step assigns triangles to a tile of pixels, and then pixels are

processed in parallel testing the list of triangles [SCS+08, EL10].
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Our approach for 3D rasterization of tetrahedra combines ideas from these two approaches.

We parallelize at the voxel level, but we produce candidate voxels based on the AABB of the

rendered tetrahedron. In addition, we face different problems than traditional triangle raster-

ization algorithms. As opposed to triangle rasterization, in our setting the tetrahedral mesh

constitutes a partition of space, hence only one tetrahedron covers each grid point. At the same

time, the 3D AABB of a tetrahedron produces many more false candidate voxels than the false

candidate pixels produced by the 2D AABB of a triangle.

3D rasterization of tetrahedra has also been studied, although the currently published al-

gorithms work by traversing scan planes and scan lines [RSF+04]. This approach is difficult

to parallelize with effective load balancing, whereas our proposed method produces extremely

uniform workload across processors.

Yet another related problem is the voxelization of triangle meshes. Current parallel ap-

proaches parallelize the voxelization on tiles, and construct an A-buffer per tile as a first culling

approach [SS10,Pan11]. Surface voxelization, although connected to volume voxelization, also

suffers different difficulties. Primitives occupy fewer voxels, but their AABBs produce many

more false candidate voxels.

One of the problems that needs to be solved as part of our algorithm is a tetrahedron-cube

intersection test. One possibility is to extend existing methods for triangle-square intersec-

tion [AMA05]. Another possibility is to build on the general separating axis test for simple

convex primitives [GLM96]. However, we exploit the fact that, in our problem, cubes are ac-

tually cells of a grid, and we design a faster algorithm that works in two steps: grid point

classification followed by conservative tetrahedron-cube intersection test.

Our tetrahedral rasterization algorithm is intended as a method for volume data deformation.

Other techniques have also been used for this purpose, such as deforming planes with semi-

transparent textures that are rendered front to back [NFP10]. Instead, we propose a method that

deforms the full volume data and allows the application of volume raycasting. More similar to

our approach is the deformation method of Goksel and Salcudean [GS09], who also map the

deformation of a tetrahedral mesh using a texture mapping approach. However, their method to

map deformed tetrahedra to voxels follows a scanline approach, and their interactive visualiza-

tions are limited to 2D images. Yet another possibility would be to apply volume raycasting on

the deformed tetrahedral mesh [KWW01, GW06], but the resolution of the tetrahedral mesh is
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too low in our case, and rendering a high-resolution tetrahedral mesh would be very inefficient.

2.1.3 Coupling between rigid-deformable bodies

One of the major issues that our work addresses is the efficient coupling of objects with various

mechanical properties, as seen in figure 2.4.

Figure 2.4: VR palpation demo of a human shoulder (left) and a conceptual representation

of a contact island, that is a set of couplings between three bodies with assorted mechanical

properties (right). Couplings were modeled to connect objects together, like virtual bones with

ligaments and muscles. In this way, each coupling is composed of binding springs.

This has been addressed for coupling constraints by [SSIF07] using binding springs. We

follow a similar approach and solve binding springs efficiently in a global conjugate gradient

solver. Coupling through contact constraints is often addressed in the game engine field, with

the runtime creation of contact islands [PO09].

Couplings are necessary for keeping virtual bodies and other structures joined together,

specially at interactive medical demos. Biomechanical modeling has seen a lot of success re-

cently in computer graphics for the simulation of body parts such as the hand [SKP08], the

neck [LT06], the face [SNF05], the torso [TSB+05,DZS08], or the complete upper body [LST09].

These models rely on highly detailed discretizations and geometrically accurate modeling of the

anatomy, which imposes severe restrictions on their applicability to interactive simulation.

For interactive simulation of deformations, methods based on the linear co-rotational finite

element formulation [MKN+04] are perhaps the ones that give a best balance between per-

formance, robustness, and measurement-based parameterization. This last aspect is important

when the behavior of a model should approximate the behavior of a real structure. Linear
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co-rotational FEM models can be accelerated by decoupling the simulation mesh from the vi-

sualization or collision detection mesh, using embedded meshes [MBTF03, SBT06, NKJF09].

Another important aspect for a biomechanical simulation is contact handling. As shown

in subsection 2.2.2, two main approaches exist. Even though they may have a higher compu-

tational cost, constraint-based methods provide higher robustness under stability issues. For

the case of rigid bodies, they are used on several open-source libraries [BUL, ODE]. It is also

worth pointing out the SOFA open-source library [SOF], which, similar to our work, supports

soft-tissue contact. In chapter 5 we explain extensively the features of our interactive human

shoulder haptic demo, applied to training and medical palpation.

2.2 Simulation of contact

Due to the last advances in computer graphics and hardware processing power of modern CPUs

and GPUs, several interactive applications, like virtual scenarios and video games, are begin-

ning to rely on physics simulators. These simulators allow to enhance the realism and behavior

of the interactive animations of the virtual characters and objects being simulated.

One of the most important parts in the simulation of physics is the proper handling of inter-

actions between virtual bodies. Handling contacts correctly prevents interpenetrations between

objects and allows the simulation of additional realistic effects like repulsion, friction, coupling,

adhesion and many others. The correct simulation of contact is a crucial problem in computer

graphics, haptics and robotics. Essentially, contact simulation is split in two components: Colli-

sion detection, that detects intersections between the surfaces of the virtual objects, and Contact

Handling, that computes repulsion forces in order to make all of these interpenetrations disap-

pear. The goal of these two components is essentially to keep bodies free of interpenetrations,

that is, well-separated from each other.

2.2.1 Collision detection

Regarding collision detection (CD), there is an extensive work on CD and contact computation

[TKH+05,Sch13]. The main goal of a CD algorithm is to detect intersection of bodies as fast as

possible. A collision detection algorithm uses as input a set of objects, its mission is to test each

primitive of each object versus each other primitive. As said in chapter 1 the maximum number
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of geometric tests could be up to N2, being N the number of primitives of all the objects in the

scene. In order to minimize this huge number of tests, a collision detection algorithm is divided

into two phases:

1. Broad-Phase: This phase determines which pairs of bodies are potentially colliding.

Many culling algorithms and data structures are defined to discard quickly false posi-

tives. A very popular approach that resolves this phase is the Sweep-and-prune method

[CLMP95].

2. Narrow-Phase: Given a pair of colliding objects, this phase generates a set of possibly

colliding primitives. Then, computes the geometric primitive tests between each pair of

primitives to obtain the set of contacts. A primitive test must perform intersection tests

between the face of a primitive A and the edges of primitive B, and vice-versa.

There is also an additional classification for detecting collisions, not only at broad phase but

also at narrow phase. This classification is based on when the collisions are detected. Discrete

methods check for collisions or penetration at a particular instant of time. Nevertheless, the

virtual objects in the simulation are usually in motion, so a discrete method may miss collisions

if the objects are moving quickly or there exist thin shells (e.g. a thin wall, a piece of cloth) in

the scene. In this case, the algorithm may not notice when two bodies go through one another,

because the query is called before and after the intersection.

Continuous methods are regarded as more robust as they test for collisions between two dis-

crete time instances and compute the first time of contact [BFA02,RKLM04,ORC07,TCYM09].

Although they require more complex tests, these methods linearly approximate the trajectory of

the vertices in between frames, transforming the primitive test into an intersection test between

two prisms. Moreover, the acceleration structures used for detecting collisions also need to ac-

knowledge this trajectory. Regarding primitive continuous tests, they would have to check for

intersections between edges and planes of these both prisms.

Due to the characteristics of our demos, in all the experiments of this dissertation we have

found that discrete collision detection algorithms are valid enough for our purposes, neverthe-

less, all of our techniques can be adapted to continuous collision detection if it is required.

Collision detection algorithms return a set of contacts. Each contact is a data structure that

can be defined in several ways, depending on the information required by the contact handling
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algorithm in use. In our case each contact between two bodies A and B is defined by the next

properties (more details in figure 2.5):

• Sa and Sb: The two intersecting surface primitives of objects A and B, respectively.

• Na and Nb: The two normal vectors of primitives Sa and Sb, in same order.

• δ : Penetration depth, it is the minimum distance required to separate Sa and Sb in order

to eliminate their intersection.

• P: Point of one of the surfaces where the penetration depth was computed.

• P′: Closest point in the surface of the penetrated object, usually it is computed projecting

P on the other surface.

Figure 2.5: In this example, the CD algorithm in use has detected an intersection between

surface primitives Sa and Sb (red dot). Performing a geometric intersection test between these

primitives reveals the penetration depth λ and the points P and P′, that are essential for the

contact handling algorithm to solve the interpenetration.

In the next section, the most popular contact handling approaches will be discussed.

2.2.2 Contact handling

The Contact Handling methods, also called collision response methods, use as input the de-

tected contacts in the Collision Detection phase and try to restore a non-penetrating state in all

the colliding bodies. Otherwise, the intersecting bodies may have unrealistic behaviors, like

55



going through one another. Although there exist several approaches, the most physically accu-

rate methods are those that compute repulsion forces and apply them to intersecting surfaces,

aiming them to separate each other in a more realistic manner. Essentially, collision response

algorithms can be classified in many kinds, based on the nature of the response there are two

categories [WB97]:

• Penalty-based methods [TPBF87, MW88, WVVS90, TMOT12].

• Constraint-based formulations [BFA02, DAK04, PPG04, DDKA06, OTSG09].

Although in literature we can also find Impulse-based methods [Mir96, BFA02, GBF03b],

they are just a subgroup of constraint-based methods.

In addition, collision response can be classified in the local or global effect of the forces, or

in the manner the contacts are processed (sequential or simultaneous).

In general, penalty-based methods are fast and suitable for real time interactive applications,

where processing speed is more important than accuracy. Constraint-based methods, on the

other hand, result in a more robust and plausible simulation at the cost of extra computation.

Apart from mere collision between objects, there exist in nature several other contact inter-

actions that might bring more richness and realism to physics simulations. For instance, most

of the actual surfaces in real world have friction. There is also coupling between objects with

diverse mechanical properties. In addition, some types of surfaces have an adhesive behavior,

specially some biological structures.

Although there exist several other phenomena, we have researched these three effects that

surely enhance the quality of the contact interactions. In the rest of this section we will enumer-

ate all the related work that, as far as we know, we have found in literature.

Penalty-Based Methods:

Penalty-based methods [MW88, BJ07a, HVS+09a] are widely used on interactive simulations,

specially when very high performance is a major goal [BJ07b]. These kind of methods can be

useful also on complex applications such as cloth simulation [BW98b, CK02]. Essentially, a

penalty-based method tries to restore a non-penetration state when two or more virtual objects

intersect. Its manner to perform consists in defining a repulsive force field which is applied to

the penetrating surface areas, based on their penetration depth.
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Traditionally, penalty-based approaches suffer from multiple problems and many of them

have been addressed in several publications. One of them consists in how to define the penetra-

tion depth, another is how to establish the direction and magnitude of each repulsion force, the

reason is because repulsive forces and penetrations are not continuous between time steps, that

fact can generate inconsistencies, as we will see below.

Regarding the definition of penetration depth, the simplest one is the one that defines a point

x that belongs to object A and it penetrates object B. The penetration depth δ (x) is the distance

to the closest point to x on the surface of B. In this way, the basic penalty energy is typically

defined as:

E(x) =
1
2

k δ (x)2 (2.1)

Where k is the stiffness constant. The penalty force can be computed as the gradient of the

penalty energy [TMOT12], i.e.,

F(x) =−∇E(x) =−k δ (x)∇δ (x) (2.2)

Given the above definition of penetration depth, the (negative) gradient of penetration depth

equals the unit surface normal n at the closest point on the surface of the penetrated object. The

penalty force can be computed simply as:

F(x) = k δ (x)n (2.3)

This definition is very similar to the Hooke’s law, as shown in figure 2.6.

As explained before, computing the penetration depth as the distance from the penetrating

point to the closest point to the surface of the penetrated object may bring several problems

to the simulation, like jittering (that is high-frequency deviation from the expected path), os-

cillatory behavior [Dru08], instability (i.e., unbounded growth of physical quantities such as

momentum), inconsistency (i.e. penetrating points with opposing penalty forces) and other is-

sues. Some approaches [HTK+04,MH05,ZKVM07,BJ08] try to mitigate these drawbacks with

different techniques.

Regarding the magnitude of each repulsion force to be applied, penalty-based methods can-

not guarantee to avoid all the interpenetrations, that is because repulsive forces need to be very

stiff or non-linear [TPBF87]. The problem is that higher contact stiffness increases the risk of

instability, in particular because the forces are discontinuous.
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Figure 2.6: Illustrative example of equation 2.3. In penalty method basic formulation, also

called discrete penalty force, interpenetrations are resolved using forces simulated by virtual

bilateral springs of rest length of 0. When the spring tries to shrink to its rest position, it pulls

both surfaces in order to reduce/eliminate interpenetration.

Computing appropriate repulsive forces is a challenging issue [BFA02, HTK+04, Dru08].

Fortunately there exist promising approaches like distance fields [FL01, HTK+04, TKH+05],

approaches like the barrier method [HVS+09b], filtering methods for haptic devices [ESJ97] or

volume-based penalty methods [HS04, TSIF05, FBAF08, AFC+10].

Contact handling constraints

Constrained contact handling is a kind of method that is robust, accurate and guarantees non-

penetration at the end of each timestep. Its formulation models collision response as a con-

strained optimization, based on Lagrange multipliers.

Constrained contact handling approach has gained popularity for simulation of rigid bod-

ies [Bar94, RKC02, PPG04, KEP05, DDKA06, Erl07, KSJP08, OTSG09, CAR+09], and since

the work of Baraff and Witkin [BW92] it also is applicable for simulation of deformable bod-

ies. One of the advantages of this method, as well as the non-penetration guarantee, is that

also allows accurate handling of friction and stacking. For more details applied to the field of

computational mechanics, refer to the book of Wriggers [Wri02] for a comprehensive treatment.

A contact constraint is a condition that always has to be fulfilled. Typically, a contact han-

dling algorithm defines an optimization problem that not only solves the dynamics of each

virtual body, but also every constraint plugged into the problem is taken in account.
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The technique that we employ in our experiments uses a linear system of equations, based

on Lagrange multipliers, where every contact detected has been defined as a constraint. In

this way, when this system is solved, the resultant forces will obey every defined constraint of

contact. In figure 2.7 we can see an example of two bodies colliding, where the equation 2.4

formulates their constraint of contact.

Figure 2.7: This figure shows an example of two virtual objects colliding (left). In order to

define a contact constraint, one point and its normal is defined per colliding surface (center and

right). The contact constraint is formulated in equation 2.4.

Na(Pb−Pa)≥ 0 (2.4)

Typically, constrained contact handling response algorithms can be classified in the manner

the contacts are processed: Iterative handling, which solves constraints one at a time, and Linear

complementarity problems (LCP), that solves all the contacts simultaneously.

Iterative constraint handling methods [BFA02, GBF03a, MHHR06], formulate and solve

each constraint sequentially and locally on the colliding areas [BFA02, MHHR06, SBT07].

Since the work of Shinar et al. [SSF08], these methods are suitable for handling contact for

deformable and rigid bodies. This kind of handling works well with small time steps and with a

low number of constraints per time step. Nevertheless, it may produce spurious energy growth

due to excessive local deformation at colliding zones. Bridson et al. [BFA02] alleviated this

effect by adding cloth relaxation steps to collision response.
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On the other hand, linear complementarity problems (LCP) [CPS92] use an implicit time-

stepping method that robustly guarantees the enforcement of the constraints at the end of the

time step [ST96]. That works because all the existing constraints at current time step are glob-

ally formulated and solved simultaneously. A simultaneous formulation guarantees that the

solution to one constraint will not violate others.

The formulation of an implicit LCP defines a linear system that includes all the constraints

to be held. Solving this system gives us the magnitudes of the repulsive forces to be applied.

These forces actually eliminate all the found intersections at the current time step.

The formulation of a contact LCP requires the computation of all pair-wise contact force

effects, a process referred to as constraint anticipation [Bar96] or computation of the Delassus

operator [DDKA06].

In our examples, we have used iterative constraint anticipation [OTSG09]. The basic dy-

namics formulation that we employ in our experiments is defined as follows, beginning by the

2nd Newton’s law:

Mv̇ = F (2.5)

Adding numerical integration, the previous equation is re-defined depending on the new

velocities v:

Av = b (2.6)

In this formulation, all the constraints are solved simultaneously, so that every constraint

like equation 2.4 is linearized, written in terms of velocity and grouped in the matrix J, all in a

single equation system like:

Jv− c≥ 0 (2.7)

Defining a system similar to Lagrange multipliers, constraints forces are added to the basic

dynamics formulation:

Av = b+JT
λ (2.8)

Jv− c≥ 0 (2.9)
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Where JT is a matrix that stores every unit vector of every contact repulsive force, and λ

are their unknown magnitudes.

As result, this is the classic contact complementarity problem:

Av = b+JT
λ (2.10)

λ ≥ 0⊥ Jv− c≥ 0 (2.11)

The ⊥ symbol means complementarity, and it requires at least the fulfillment of one of the

two conditions it joins (left or right).

Solving the Constrained Problem implies to single-out the velocities:

v = A−1(b+JT
λ ) (2.12)

And plug them into the constraints:

Jv− c≥ 0 (2.13)

We obtain an LCP:

Bλ ≥ d (2.14)

Where:

B = JA−1JT (2.15)

d = c−JA−1b (2.16)

Our preferred linear solver is Projected-Gauss-Seidel (PGS), this solver allows to project λi

as it visits each single equation in the system. The applied non-penetration projection described

as follows:

if λi < 0 then λi← 0

PGS algorithm solves each row ith of Bλ ≥ d as shown:

For the ith row:

Biiλi +Biλ ≥ di (2.17)

Where:
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Bi : is Bi−{Bii}, that is the row Bi without the ith column.

λ : is λ −{λi}, that is the vector λ without the ith row.

Finally, solving each constraint force λi (and projecting it to 0 if needed):

λi = max(0,
di−Biλ

Bii
) (2.18)

Although LCP systems have higher computation cost, they solve robustly all the dynamics

of the virtual bodies and all the contacts happened in the simulation. In simulations with rigid

bodies only, these systems are very fast because each rigid body has few degrees of freedom

(dofs) and the resultant linear system to be solved is small. The problem arises when deformable

bodies are present in the simulation. Deformable objects usually have many dofs and implicit

constraints. As result, that implies the solution of larger linear systems, which become exces-

sively expensive.

In order to speed-up computation, several approaches have been developed, many of them

trying to rely in precomputations, for instance using linear [PPG04] or global co-rotational

deformation models [DDKA06]. Other techniques try to exploit linear system solvers main-

taining an active constraint set, like Raghupathi and Faure [RF06]. Other approaches try to

make approximations, like the use of compliance warping (Saupin et al. [SDCG08]), designed

to accelerate the formulation of the Delassus operator. Finally, there is a recent approach which

uses reduced deformation models, like the one used in Kaufman et al. [KSJP08], developed to

accelerate non-penetration and frictional LCPs in a staggered manner for rigid bodies.

2.2.3 Friction

Friction is a force that opposes to tangential movement between two surfaces in contact. If

friction force did not exist, surfaces might slide without resistance, like over ice.

As far as we know, the most popular mathematical model for friction computation is Coulomb’s

cone, shown in equation 2.19.

Fr <= µFn (2.19)
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Where Fn is the normal force applied from one surface over the other, and µ is the Coulomb’s

friction coefficient, which depends on the properties of the surfaces in contact. Remember that

the maximum magnitude of Fr cannot be greater than µFn.

There are works in computer graphics that implement friction in rigid body simulations [Lot84,

Bar91,ST96,ST00,KEP05], multi-body and articulated rigid bodies [AP97,KSJP08]. There are

also friction algorithms for deformable bodies, like cloth [BFA02] or finite element methods

(FEM) [WVVS90]. Finally, friction is not modeled only for constrained contact handling, but

also there are penalty-based approaches [YN06] and impulse-based algorithms [KSK97] that

implement it.

2.2.4 Adhesive contact

Adhesion (also referred to as stiction) is the phenomenon which keeps two contacting surfaces

glued together. Hence, this is a force that opposes to forces (traction or tangential) that might

try to separate those surfaces. In figure 1.5 several real-world examples of sticky objects are

shown. Adhesive contact gives more realism and richness to the simulations, specially between

wet surfaces, biological structures, mucous membranes and others.

As adhesion is closely related to the contact phenomenon, that we have introduced in sub-

section 2.2.2, we have modeled this phenomenon as a constraint-based formulation, that is

plugged to a LCP algorithm of contact handling. The features of our technique are exhaustively

explained in chapter 4.

In computer graphics, adhesion has been modeled before in a way similar to penalty forces [JL93,

CJY02, BMF03, WGL04, SLF08]. When adhesion takes place, a bilateral spring is set between

contact points. As we will discuss later, under traction our adhesion constraints can also be

regarded as springs, but under compression they are not active, and we completely enforce non-

penetration instead. Another important difference between our constraint-based adhesion and

typical adhesive springs is our physically-based model for decohesion.

On the other hand, the formulation of adhesion using constraints was largely developed in

the field of contact mechanics by Fremond [Fre87], while Raous et al. [RCC99] developed a

thermodynamics background and the connection to friction. A summary can be found in the

book of Wriggers [Wri02]. Similar to adhesion, other phenomena, such as puncture [CAR+09],

can be modeled using constraints in conjunction with contact.
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Our approach takes many of these ideas and adapts them to computer graphics, specifically

to constraint-based contact simulations. Our implementation is suitable for rigid and deformable

bodies and it is easy to integrate it into existent contact handling frameworks, like [BUL, ODE,

SOF] and others. As said before, more details about our method are shown in chapter 4.

2.3 Development of VR applications

The development of VR applications is a process well-known to be demanding and full of com-

plexities. This multidisciplinary task not only requires an advanced device management and the

most efficient state-of-the-art algorithms, but also it demands the use of rapid authoring tools.

These tools are useful for the creation of assets (virtual objects) and for the composition of the

entire simulation scene. In addition, the employment of exportation scripts enables developers

to migrate each asset to the simulator and to check each object’s mechanical properties in the

actual simulation environment. To summarize, the development of VR applications requires the

definition of a pipeline, as shown in figure 2.8.

Figure 2.8: A pipeline applied for the development of VR multi-screen applications.

Several physics-based applications, like our shoulder palpation demo mentioned in chapter

5, rely heavily on robust collision handling algorithms, that is because most of the time sev-

eral virtual bodies are colliding each other. These algorithms require the bodies to start the

simulation well-separated from each other, in an inherently stable configuration. In order to
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accomplish these requirements, adapted authoring tools and custom file formats and scripts are

required for a proper mechanical configuration of the affected assets.

Regarding VR applications that are executed in large-area display systems, they allow more

immersion for the user, but, on the other hand, they also present additional challenges in their

development. Large-area displays provide a high degree of immersion in VR applications, often

making the VR experience more compelling to the user. This kind of displays can typically

be achieved in two ways. One way is to project the image onto a large passive screen using

a powerful projector, such as in a PowerWall, a CurvedScreen, a Workbench [KBF+95] or

subsequent similar designs. Another way is to tile multiple smaller displays.

In the first way, the difficulty is to achieve high resolution images, while in the second way

the difficulties are due to color and brightness consistency [Sto01]. Tiled displays are also more

expensive and require more computational resources. A CAVE system [CNSD93] shares some

similarities with both approaches, as it uses multiple projectors to project images on several

passive screens and give the user a sense of full immersion in a virtual environment.

The output display is just one of the hardware components involved in the design of a VR

application. Typically, VR applications also involve various input devices, and possibly non-

visual output, for example haptic response. Multiple researchers have developed solutions based

on abstraction layers that free the developer from dealing with implementation details about I/O

devices.

An early example is CAVELib [CN95], created by the inventors of the CAVE and later

turned into a popular commercial tool. CAVELib’s major limitation is its strong connection

to specific hardware configurations. A more recent and active VR design framework is VR-

Juggler [BJH+01]. It provides excellent support for I/O and it is managed at a programming

level. There are many other VR development frameworks that provide abstraction layers, such

as DIVERSE [KSA+03], Studierstube [SRH03], RB2 [VPL90], DIVE [CH93], dVS [Gri91],

Avocado [Tra99], VRPN [THS+01], Equalizer [Equ], MRToolkit [SLGS92], or dVise [Ghe97].

A more recent framework, INVRS [Ant09], extends traditional abstraction capabilities to net-

worked virtual environments.

Some VR authoring frameworks also provide easy-to-use graphical interfaces for applica-

tion development. AMIRE [GHR+02] is an authoring tool for mixed reality, whose interesting

aspect is that the design of the virtual environment may be performed in an intuitive manner
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in a mixed reality setting. EAI’ Wordltoolkit [Ini97] enables novice developers to quickly pro-

totype an application, however, it expects the application data to come from CAD packages.

Finally, the commercial framework EON Studio™ [Eon], from EON Reality Inc, allows au-

thoring through a graphical user interface. It is a complete package for a CAVE environment,

however it lacks flexibility for developers.

In the creation of a VR application, modeling and rendering the virtual environment plays

an important role as well. There are many high-quality options for content creation and render-

ing. Multiple rendering engines [OGR, OSG, Epi, Cryb] allow the creation of highly realistic

yet real-time visualization applications without low-level knowledge of the most advanced CG

algorithms. Some months after finishing our study of alternatives and developing BlenderCave,

the developers of a render engine called Unity [Unib] also coded additional functionality in

order to allow VR applications to run in multi-display systems. VR device abstraction frame-

works [BJH+01, THS+01, Ant09] ease I/O services, communications and process management

aspects. Finally, virtual sandbox tools allow content creation and the definition of the applica-

tion’s logic in easy-to-use visual editors.

In chapter 6 we have a detailed analysis of several state-of-the-art rendering engines. In

section 6.1 we discuss some of the most relevant ones in detail. In addition, a comparative of

their capabilities is shown in table 6.1.
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Chapter 3

Fast Deformation of Volume Data Using

Tetrahedral Mesh Rasterization

Figure 3.1: 3D medical image with the nodes of a tetrahedral mesh overlaid (top left). The next

three snapshots show interactive deformations of a kidney, the heart, and abdominal vessels.

The 256×160×122 volume is deformed at 67fps.
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As introduced in section 1.1, and explained in more detail in the previous chapter (section

2.1), regular 3D grids are a popular way to store dense volumetric data. They are often used

to capture and represent volumetric information of anatomy or other biological forms, as those

shown in figure 1.4, notably in medical imaging [Son00]. Volume rendering offers a convenient

way to illustrate in a single view the internal structures of solid volumetric objects stored in

regular 3D grids [RSHRL08].

Elastic deformations, on the other hand, are typically solved by discretizing the deformation

field on a Lagrangian mesh, i.e., a mesh that moves and deforms along with the material, as this

enables trivial mass conservation and, as seen in section 2.1, deforming a mesh is a trivial task.

To deform and manipulate volume data, e.g., for medical planning applications, the data is typi-

cally segmented and meshed, and the deformed data is visualized using surface meshes [SM00].

As a result, the visualization of the deformed data misses the full-resolution volumetric detail

present in the original 3D grid.

Instead, we propose a method that takes as input a deformation field discretized on a tetra-

hedral mesh, and uses it to warp the original volume data into a new 3D grid. Our method is

independent of the technique used to compute the deformation (See [NMK+06] for a survey of

deformation techniques). The data in the resulting grid can be visualized with standard volume

rendering algorithms to reveal its full volumetric detail.We pose the problem of warping the

volume data as tetrahedral mesh rasterization with 3D texture mapping, and the central contri-

bution of our work is an extremely fast method for tetrahedral rasterization. As an example,

the human torso data in the first image of this chapter, with 4.99M voxels (256×160×122), is

deformed at 67fps. In other examples, our method allows the deformation of volume data with

over 20 million voxels at interactive rates.

In chapter 2 (subsection 2.1.2) we have discussed the previous work related to our deforma-

tion approach. And in Section 3.1 we describe a massively parallel 3D image warping approach

based on barycentric mappings. To further accelerate rasterization, we introduce a parallel

culling algorithm described in Section 3.2. We conclude the chapter with a discussion of per-

formance and results.

All the contributions shown in this chapter were published in [GEP+13].
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3.1 3D Grid Warping

The input data to our method is a regular 3D voxel grid G0, where the voxels store a scalar field

c0 (which could be extended to vector or tensor fields). In addition, the method takes as input

a tetrahedral mesh M0, which may partially or completely embed the grid. Given a deformed

tetrahedral mesh M1, we wish to compute a deformed scalar field c1 on an output 3D voxel grid

G1. We assume that the deformation field is linearly interpolated inside each tetrahedron.

We propose a massively parallel method to compute the deformed scalar field c1, by raster-

izing the deformed tetrahedra onto the output grid G1, and assigning values of the scalar field as

a texture mapping process. We trivially define the assignment of deformed scalar values through

barycentric mappings inside each tetrahedron. Formally, given a point with barycentric coordi-

nates b inside a tetrahedron T , and with undeformed (resp. deformed) position x0 (resp. x1),

we define two barycentric mappings: β0 : x0→ b and β1 : x1→ b. Given matrices X0 and X1

whose columns are formed respectively by the undeformed and deformed positions of the nodes

of T , and a vector of ones 1, the mappings β0 and β1 are defined as the linear transformations

b = β0(x0) =

 X0

1T

−1 x0

1

= B0 x̄0, (3.1)

b = β1(x1) =

 X1

1T

−1 x1

1

= B1 x̄1. (3.2)

Here, x̄ represents a point x in homogeneous coordinates.

In practice, to assign the deformed scalar value of a voxel with position x1, we simply fetch

the scalar value from the input point x0 with the same barycentric coordinates. This operation

is formally defined as c1(x1) = c0(β
−1
0 (β1(x1))). In our results, we have implemented the

texture read operation c0(x0) as a trilinear interpolation of voxel values. Note also that x0 and

x1 denote point positions in world coordinates, and they need to be transformed to and from

device coordinates for texture access operations. This transformation accounts for deformations

that change the overall size of the volume data, as well as anisotropic voxel spacing in the input

data.

Next, we describe the massively parallel rasterization of the complete grid. We start with

a basic algorithm, and in the next section we describe the addition of culling for improved

efficiency. First, for each tetrahedron, we compute matrices of barycentric mappings B−1
0 and
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B1. We also compute an AABB for each deformed tetrahedron. Then, we process all voxels

inside the AABB of each deformed tetrahedron, and compute their barycentric coordinates b

following Eq. (3.2). For each voxel, we test if it lies inside its corresponding tetrahedron or not

using the barycentric coordinates. If it does, then we compute and write the deformed scalar

value.

The computation of barycentric mappings and the AABBs of tetrahedra are executed on the

CPU. Processing the voxels, on the other hand, is remarkably amenable to GPU architectures.

Our voxel rasterization algorithm is outlined in Algorithm 1. It barely suffers divergence, as the

voxels that do not follow the main flow, i.e., those that lie outside the tetrahedron, are simply

discarded. Texture look-ups are not coalesced, but they enjoy high cache coherence.

Algorithm 1 GPU voxel rasterization algorithm
INPUT: thread_id, block_id, c0

OUTPUT: c1

corner = GetAABBCorner(block_id)

size = GetAABBSize(block_id)

x1 = corner + ComputePosInAABB(thread_id, size)

B1 = GetB1(block_id)

b = B1 x̄1

if IsOutsideTet(b) then

discard thread

end if

B−1
0 = GetB0Inv(block_id)

x̄0 = B−1
0 b

c1 = GetTrilinear(c0, x0)

3.2 Hierarchical Culling

The volume of a tetrahedron is just 1
6 of the volume of a prism defined by one of its corners

and the three incident edges. This fraction of volume suggests that most of the voxels inside

the AABB of a tetrahedron fall outside the tetrahedron itself. In fact, we found that, with the

AABB-based rasterization described in the previous section, only 14.3% of the candidate voxels
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Figure 3.2: Left: Examples of grid point masks for a triangle (A,B,C). The green cell can be

culled because the barycentric coordinate of A is < 0 for its 4 vertices. Right: In 3D, our culling

algorithm may produce false positives for cells close to an edge of a tetrahedron, such as the red

cell in the figure.

fall inside their corresponding tetrahedron. Next, we describe a hierarchical culling approach

that reduces dramatically the voxels to be rasterized.

3.2.1 Grid Point Masks

For each tetrahedron in the deformed mesh M1, we define a coarse grid with a spacing of N

voxels. Each coarse cell encloses N3 voxels of the output grid G1, and if a cell does not intersect

the tetrahedron, then its complete batch of enclosed voxels can be culled. Instead of testing for

exact cell-tetrahedron intersection, we compute a spatial classification of coarse grid points, and

then apply a conservative culling of coarse cells.

Based on barycentric coordinates b = ( bA bB bC bD )T for a tetrahedron (A,B,C,D),

we define 8 half-spaces bA < 0, bA > 1, bB < 0, bB > 1, bC < 0, bC > 1, bD < 0, and bD > 1.

Then, for each coarse grid point, we compute an 8-bit mask where each bit classifies the point

w.r.t. one of the 8 half-spaces.

3.2.2 Cell Culling

Our culling algorithm is based on the following theorem. Given the 8 half-spaces of a tetrahe-

dron as defined above, and the 8 vertices of a coarse cell, if there is at least one half-space such
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that all 8 vertices lie inside, then the tetrahedron and the cell do not intersect. As a corollary, all

voxels inside the cell can be culled and do not need to be rasterized.

Based on this theorem and the readily available grid point masks, the culling of cells can be

trivially executed as follows. For each cell, we perform a logical AND operation of the masks

of its 8 vertices. The cell can be culled if the value of its mask is not 0. Fig. 3.2-left shows

examples of point and cell mask computations.

In 2D, cell-triangle culling is exact if all 4 vertices of a cell are inside the AABB of the

triangle. In 3D, cell-tetrahedron culling is conservative and may produce false positives for

cells close to an edge of the tetrahedron, as shown in Fig. 3.2-right. However, as we show in

our results, the number of false positives is small in practice, and we achieve a good trade-off

w.r.t. culling cost.

Our algorithm would easily allow additional levels of hierarchical culling and an octree-

based refinement strategy. However, our results indicate that, with just one level of hierarchi-

cal culling, rasterization of valid voxels becomes the bottleneck; therefore, more sophisticated

culling would not yield additional speed-up.

3.2.3 Implementation Details

First, we process the coarse grid points of all tetrahedra and compute their masks. Subse-

quently, we process the cells of all tetrahedra and compute their masks too. Although these two

procedures are highly amenable to GPU computation, we have found that a multi-core CPU

implementation is fast enough and culling is not a bottleneck compared to rasterization, as we

present in our results. After the computation of grid point masks and cell masks, we rasterize in

parallel on the GPU all voxels of cells that cannot be culled. Each cell is treated as an AABB,

and hence we follow the procedure already presented in Algorithm 1. In our tests, we found

optimal performance by making the cell size the same as the CUDA block size. Once culling

is executed, we construct on the CPU look-up tables that map each valid cell, through its corre-

sponding CUDA block_id, to the AABB’s size and location, and the barycentric mappings B1

and B−1
0 .
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Figure 3.3: Torso model for performance analysis. Left: in its initial configuration; Right:

rotated 45deg around two orthogonal axes.

Figure 3.4: Animation of swimming carps with raycasted volume visualization. Each carp is

represented using a 204× 202× 512 volume and deformed using a 35-tetrahedra mesh. Our

rasterization algorithm runs at 57.87ms per carp.

3.3 Results and Evaluation

We have tested our fast rasterization algorithm on several volumetric deformation examples.

All examples were executed on a 3.40GHz 8-processor Intel i7 CPU with 32GB of RAM, and

a NVIDIA GeForce GTX 680 GPU with 2GB of RAM. Our parallel GPU rendering algorithm

was coded using CUDA. We observed optimal processor occupancy with a CUDA block size

of 512, and optimal balance between culling and performance trade-off with a cell size of 8×

8×8 = 512, i.e., equal to block size. For volume rendering, we have used VTK [SML04].
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3.3.1 Performance Analysis

To evaluate the performance of our algorithm, we have designed a controlled deformation exam-

ple, tested under various resolutions and settings. Fig. 3.3 shows two snapshots of a volumetric

anatomical model, in its upright initial configuration (left), and rotated 45 degrees around two

orthogonal axes (right). The model is meshed with an axis-aligned regular tetrahedral mesh,

and the rotation creates a misalignment of axes and tetrahedral edges, increasing the volume of

AABBs of tetrahedra. We have tested tetrahedral meshes ranging from 40 to 5000 tetrahedra,

and volume data with resolutions ranging from 128×128×128 to 512×512×512.

First, we have evaluated the performance of our rasterization algorithm with no culling, as

described in Section 3.1. Most of the time spent on rasterization is devoted to the computation

of barycentric coordinates for voxels that fail the barycentric coordinate test. In fact, only 14.3%

of the voxels processed in the GPU pass the barycentric test and are actually updated.

With our culling algorithm described in Section 3.2, on the other hand, 51% of the voxels

processed in the GPU pass the barycentric test and are actually updated. The total rasterization

time achieves a speed-up of up to 1.5×. Fig. 3.5 shows graphs of total rasterization time per

frame vs. volume data size, with and without culling. The speed-up becomes larger with larger

datasets. For this comparison, we used a tetrahedral mesh with 1080 tetrahedra.
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Our voxel batch culling takes only 7% of the total cost on average, and culls away 68% of the

unnecessary voxels. As described in Section 3.2, we have used a parallel CPU implementation

for the computation of grid point masks and cell masks. On an 8-core machine, it achieves up

to 2.6× speed-up over a single core implementation.

We have also evaluated the influence of the tetrahedral mesh resolution on performance, as

shown in Fig. 3.6. The plot shows the total rasterization time per frame vs. tetrahedral mesh

size, with and without culling, for the rotated configuration shown in Fig. 3.3. The data in the

plot was collected for a volume with 233M voxels after the rotation. As expected, with culling,

performance tends to decrease with denser tetrahedral meshes, as more tetrahedra need to be

processed, and the cell resolution reduces the culling efficiency.

3.3.2 Simulation Examples

Our first two examples show the potential of our technique for animation purposes. Fig. 3.4

shows 8 carp models swimming, due to a scripted procedural deformation applied to their em-

bedding tetrahedral meshes. Each carp is modeled using 35 tetrahedra, and the volume dataset

consists of 21M voxels in the undeformed state. Each carp is rasterized in 57.87ms on average.

Fig. 3.7 shows 6 oranges falling and rolling on a plane. We have modeled the deformation us-

ing a linear corotational finite element model [MG04], and we have simulated frictional contact

with the plane considering only collisions of the nodes of the tetrahedral mesh. Each orange

is modeled using 160 tetrahedra, and the volume dataset consists of 6.3M voxels in the unde-

formed state. Each orange is rasterized in 15.64ms on average.

But, in addition to animation, our work is largely motivated by medical planning applica-

tions, with the possibility to provide an interactive volume manipulation and deformation tool.

As a test example, we present the interactive deformation of the torso model in Fig. 3.1. Manip-

ulating the original volume data is appealing for medical applications, as the full detail of the

data is still available during the deformation, and the volume rendering settings can be dynami-

cally tuned. The example uses a finite element model with 700 tetrahedra, and a volume dataset

with 4.99M voxels. The full model is rasterized in 14.86ms on average. Note that even though

the deformations may be localized, we rasterize the full volume to test the performance of our

algorithm.

We have modeled the inhomogeneity of tissue properties using standard tables to con-
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vert opacity values into mechanical parameter values, and we compute nodal masses and per-

element stiffness matrices by integrating per-voxel mechanical parameters. Nevertheless, the

material properties and the actual deformations do not intend to appear realistic; we simply

demonstrate the performance of our method and the interaction possibilities.

3.4 Conclusion

In this chapter we have presented an algorithm to efficiently deform volumetric data by ras-

terizing an embedding tetrahedral mesh. The simplicity of the method is key for its high per-

formance, as it enables processing all target voxels in parallel with very simple operations and

practically no divergence. To further accelerate rasterization, we apply efficient multi-core CPU

culling as a first step.

Our method suffers some limitations, such as the existence of false positives during culling.

However, these false positives do not hurt performance significantly. Another limitation is the

smoothing introduced by trilinear interpolation of input data. More costly filtering approaches

would produce higher quality results.

From an applied point of view, our method allows interactive editing, manipulation, and
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the torso model in Fig. 3.3. We used a volume with 233M voxels after the rotation.
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Figure 3.7: Deformable oranges bounce and roll on a plane. Each orange is represented using a

198×199×160 volume and deformed using a 160-tetrahedra mesh. Our rasterization algorithm

runs at 15.64ms per orange on average.

deformation of dense volume data. Its applicability could be extended by handling other types of

mesh elements and basis functions, such as trilinear interpolation in hexahedra. This extension

would require modifications to the mapping function and the culling algorithm.

Currently, our rasterization algorithm is being used by the GMRV group in the context of an

INNPACTO project in collaboration with company GMV. The method is being applied for the

deformation of breast imaging data, and there is currently a submission under review.
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Chapter 4

Constraint-Based Simulation of Adhesive

Contact

Figure 4.1: Pieces of candy with diverse adhesion coefficients fall on top of a block of Jell-O.

In the previous chapter we showed a volumetric representation used for deformable anatomic

models and other biological forms. In this chapter we describe a phenomenon very common
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between biological surfaces called adhesion. Adhesion is an effect intrinsically related to con-

tact that was introduced in the chapter 1 (subsection 1.2). This phenomenon can be regarded

as a thermodynamic effect in which a potential energy is stored at the interface between two

surfaces. Debonding two surfaces that are adhered requires a traction force high enough to

release the adhesion energy [RCC99]. In addition, we have referred to other approaches regard-

ing adhesion in the chapter 2 (subsection 2.2.4). More recently in computer graphics, adhe-

sion is commonly handled in the simulation of viscoplastic materials using continuum models

(See [BWHT07, WTGT09] for two ways of merging viscoplastic materials due to adhesion).

Instead, in this chapter we are interested in modeling and simulating adhesion at a coarser

scale, in order to efficiently handle sticking effects at the interface between rigid and/or elas-

tic objects. Some examples of these kind of objects can be found in figure 1.5. We follow a

constraint-based formulation, inspired by adhesion models described in the computational me-

chanics literature [Wri02, Fre87, RCC99]. Our main contribution is an algorithm for efficiently

handling adhesion as part of constrained dynamics simulation.

Given a constraint-based formulation of contact dynamics (Section 4.1), and a formulation

of adhesion using unilateral constraints (Section 4.2), we have developed an algorithm (Sec-

tion 4.3) for seamlessly integrating adhesion constraints into state-of-the-art constraint-based

contact solvers. A priori, this integration is not trivial, because, unlike non-penetration con-

straints, adhesion constraints are formulated in terms of both contact force and the separation

at the contact interface. When formulating these constraints implicitly (a condition for large

time steps), they become non-linear, thereby complicating the solution of the system. However,

we present an algorithm that elegantly handles implicit adhesion constraints in the context of a

projected-Gauss-Seidel solver for linear complementarity problems.

Our approach is general, and it handles rigid bodies, volumetric elastic bodies, thin shells

such as cloth, and their combinations, as shown in our examples. Once the mathematical for-

mulation is developed, integrating adhesion in state-of-the-art constraint-based contact solvers

is simple and efficient, allowing interesting effects with low effort.
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4.1 Constraint-Based Contact

In this section, we describe the underlying constrained dynamics formulation where we in-

clude the formulation of adhesion constraints. We first describe a general formulation of the

constrained dynamics problem, and then we discuss its solution using a PGS solver.

4.1.1 Formulation

Given state and velocity vectors q and v that group the coordinates and velocities of all objects

in a scene, we target constrained dynamics formulations of a general form

Mv̇ = F, (4.1)

q̇ = Gv, (4.2)

g(q)≥ 0. (4.3)

M denotes de mass matrix and F is the force vector, G relates the velocity vector to the derivative

of the generalized coordinates (G is typically identity for deformable bodies, but not for rigid

bodies [Sha89]), and g is a vector of constraints. In our examples, we have used linear co-

rotational finite element models [MKN+04], mass-spring cloth [BFA02], and rigid bodies. We

formulate contact constraints by executing continuous collision detection between state updates.

The general formulation is valid for other constraints such as joints, although we did not test

them in our examples.

We assume that the dynamics equations of the system are discretized and linearized, which

yields a constrained velocity formulation of the form:

Av = JT
λ +b, (4.4)

0≤ λ ⊥ Jv≥ c. (4.5)

The system dynamics may be discretized with explicit integrators or implicit integrators with

force linearization (see [BW98a] for the formulation of A and b under implicit Backward Eu-

ler discretization). λ represents contact impulses at the constraints, while Eq. (4.5) describes

non-penetration as linear complementarity constraints. In our examples, we used an implicit

position-level LCP, linearized to yield velocity constraints as shown here. This type of for-

mulation (including friction, which is omitted here for readability) can be found, for example,
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in [DDKA06]. Specifically, we have followed the approach of [OTSG09] for the discretization

of both dynamics and contact constraints.

The complete system from Eqs. (4.4) and (4.5) constitutes a mixed linear complementar-

ity problem (MLCP). With friction, the system remains an MLCP if friction constraints are

expressed using a linearized version of Coulomb’s friction cone. We align the friction cone

at each contact with the direction of the unconstrained tangential velocity. The MLCP can be

transformed into the following LCP:

0≤ λ ⊥ Bλ ≥ d, with (4.6)

B = JA−1JT , d = c−JA−1b.

In our examples, we have used iterative constraint anticipation [OTSG09], a variant of this

formulation that produces a sparse matrix B by nesting two relaxation solvers. The approach

described in this chapter for including adhesive constraints into the LCP is independent of the

way in which the LCP is formulated, but, for deformables objects with many degrees of freedom

and many contacts, iterative constraint anticipation provides better performance in practice.

The ith constraint in Eq. (4.6) represents the implicit non-penetration constraint of the ith

contact, after linearization and time integration. Then, the gap function gi at the ith contact at

the end of the time step can simply be expressed (up to linearization) as

gi = ∆t(Biλ −di) (4.7)

Bi and di represent the ith rows of B and d, respectively.

4.1.2 Solution

We consider the solution of the LCP problem above using a PGS solver. Then, when a PGS

iteration reaches the ith contact, the constraints for that contact can be expressed as:

0≤ λi ⊥ Biiλi−di ≥ 0, (4.8)

with di = di−Biλ i. (4.9)

λ i contains all values of λ but λi. It combines values from the current iteration of PGS (up to the

ith entry), with values from the previous iteration (after the ith entry). Bi is defined accordingly,

by removing Bii from Bi.

During each iteration of PGS, the ith contact is handled as follows:
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1. Compute λ ∗i = di
Bii

.

2. Project λi = max(λ ∗i ,0).

4.2 Formulation of Adhesion

The thermodynamics model of adhesion by Raous et al. [RCC99] defines an elastic potential

energy at a contact interface as a function of the separation gap g and an adhesion intensity β

(with both terms squared). The adhesion intensity term captures the thermodynamic effect that,

under traction, internal adhesion energy can be released as heat. This thermodynamics model

has two implications when developing a computational algorithm for simulating adhesion: (i)

it defines a constraint law that relates the maximum adhesive force to the contact gap and the

adhesion intensity, and (ii) it defines a physical law for debonding, i.e., the time-dependent

reduction of the adhesion intensity due to heat release. In this section, we describe the adhesion

constraint law and the debonding law, as well as our own model for bonding, i.e., the time-

dependent increase of the adhesion intensity under compression.

4.2.1 Adhesion Constraints

An adhesion constraint implies that the traction force must be smaller than a maximum defined

by the adhesion intensity. Together with the non-penetration constraint, adhesive contact can be

formulated with the following complementarity constraints [RCC99, Wri02]:

0≤−pi +Ciβ
2
i gi ⊥ gi ≥ 0 (4.10)

where βi ∈ [0,1] is the adhesion intensity, Ci is the adhesion stiffness, and pi is the traction. The

value of the adhesion stiffness depends on the materials and the local properties of the contact

interface.

In order to handle adhesion in the tangent plane, we use a box model that accounts separately

for the normal adhesion and tangential adhesion along two orthogonal directions. We set a local

frame on each contact, using the normal n, the direction of unconstrained tangential velocity,

t, and the binormal b = n× t. The adhesion constraint can then be expressed for each contact

impulse and gap function independently. Tangential adhesion can be regarded as a model similar
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to Coulomb friction, with the difference that the magnitude of the tangential force is limited by

the adhesion intensity, instead of the magnitude of the normal force.

4.2.2 Bonding

Bonding and debonding model the evolution of the adhesion intensity as a function of the con-

tact traction/compression. In the case of bonding, we account for a bonding rate, r, and a

compression value for saturation, p0. Adhesion intensity will grow as long as compression is

exerted, until saturation is reached. Specifically, our bonding model is formulated as:

β̇i = r max(pi−βi p0,0) (4.11)

4.2.3 Debonding

For the debonding model, we follow the linear case in the thermodynamic adhesion model [RCC99,

Wri02]. Considering the adhesion stiffness C and the gap function g, debonding starts taking

place once Cg2β reaches a maximum adhesion energy W . The term Cg2β is obtained by differ-

entiating a thermodynamic energy 1/2Cg2β 2 w.r.t. β . Please see [RCC99] for the full details.

During debonding, adhesion decreases at a rate of 1
η

, where η is a viscosity parameter. For-

mally, we can write the debonding model for the ith contact as:

β̇i =
1
η

min(W −Cig2
i βi,0) (4.12)

4.3 Algorithm

We describe now our algorithm for including adhesion constraints in the contact solver outlined

in Section 4.1. We start by describing the 1D case, and then extend it to the full 3D case

including tangential adhesion. Last, we describe the evolution of the adhesion intensity.

4.3.1 Implicit Adhesion Constraints: 1D Case

Our goal is to execute a PGS step similar to the one in the non-adhesive case (Eq. (4.8)). In

the adhesion constraint in Eq. (4.10), contact traction is related to the gap function, hence im-

plicit adhesion constraints do not allow for a simple computation of a projection value. Contact
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traction is related to the contact impulse by pi =− λi
∆tAi

, with Ai the local contact area. Account-

ing for the implicit definition of the gap function from Eq. (4.7), an adhesion constraint can be

reformulated in terms of the contact impulse as:

0≤ λi +∆tAiCiβ
2
i gi ⊥ Biλ ≥ di (4.13)

In order to compute the local area, at edges and vertices we store the averaged area of inci-

dent triangles, and at each contact we select the smallest area from those of the two primitives

involved in contact. In this way, contact traction is less sensitive to mesh resolution.

By substituting the implicit gap function from Eq. (4.7), we obtain the following implicit

linearized adhesion constraint:

0≤ λi +∆t2AiCiβ
2
i (Biλ −di). (4.14)

A priori, the constraint depends on all values of contact impulses λ , but we are interested in its

evaluation in one PGS step. Then, we can substitute the evaluation of the right-hand-side of the

PGS step given by Eq. (4.9):

0≤ λi +∆t2AiCiβ
2
i (Biiλi−di) (4.15)

It suffices to single out λi in order to express the implicit adhesion constraint on the contact

impulse. By analogy with Eq. (4.8), in the adhesive case the complementarity constraint in the

PGS step turns into:
∆t2AiCiβ

2
i di

1+∆t2AiCiβ
2
i Bii
≤ λi ⊥ Biiλi−di ≥ 0 (4.16)

As demonstrated, since di is readily computed during the PGS iteration, applying implicit ad-

hesion constraints effectively reduces to modifying the projection values of the PGS solver.

4.3.2 Full 3D Adhesion

With the inclusion of tangential adhesion, the contact impulse at the ith contact can be repre-

sented as a vector λi =(λi,n,λi,t ,λi,b)
T , with the tangential impulses aligned with the pre-contact

tangent velocity and the binormal. Using a Block-PGS relaxation solver, the Bii block of the B

matrix is now

Bii =


Bii,nn Bii,nt Bii,nb

Bii,tn Bii,tt Bii,tb

Bii,bn Bii,bt Bii,bb

 (4.17)
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By analogy with the case with normal adhesion only, we can write now the implicit normal

gap in the case of full 3D adhesion, in the context of the Block-PGS solver:

gi,n = ∆t(Bii,nnλi,n−di,n), (4.18)

with di,n = di,n−Bi,nλ +Bii,ntλi,t +Bii,nbλi,b.

Tangential and binormal gaps can be expressed in a similar way. By inserting these implicit ex-

pressions into the adhesion constraints expressed as in Eq. (4.13), we can single out the contact

impulses and formulate the projection values for the Block-PGS solver. At the projection step,

tangential and binormal adhesion are handled slightly differently than in the normal direction,

because forces must be constrained in positive and negative directions.

Eventually, the algorithm for Block-PGS with implicit adhesive constraints can be outlined

as follows:

1. Compute di,n = di,n−Bi,nλ +Bii,ntλi,t +Bii,nbλi,b.

2. Compute λ ∗i,n =
di,n

Bii,nn
.

3. Project λi,n = max(λ ∗i,n,min( ∆t2AiCiβ
2
i di,n

1+∆t2AiCiβ
2
i Bii,nn

,0)).

4. Compute di,t = di,t−Bi,tλ +Bii,tnλi,n +Bii,tbλi,b.

5. Compute λ ∗i,t =
di,t

Bii,tt
.

6. If λ ∗i,t < 0, λi,t = max(λ ∗i,t ,min( ∆t2AiCiβ
2
i di,t

1+∆t2AiCiβ
2
i Bii,tt

,0)).

7. Else, λi,t = min(λ ∗i,t ,max( ∆t2AiCiβidi,t
1+∆t2AiCiβiBii,tt

,0)).

8. Do for λi,b similarly as for λi,t .

It is convenient to include a friction model, and, out of tangential adhesion and friction, apply

the most restrictive projection. This projection refers to the value used for projection in step 6

above. We have used Coulomb’s friction model with a 4-sided pyramid approximation. Same

as for tangential adhesion, we align the pyramid in every time step to the unconstrained relative

velocity at each contact.
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4.3.3 Adhesion Evolution

After a complete step of the constrained dynamics solve, we evolve the adhesion intensity β

at all contacts. First, we determine the compression or traction state, and apply the bonding or

debonding model, as appropriate. Normal compression may increase bonding, while normal

traction may decrease bonding. Tangential adhesion forces, on the other hand, always tend to

decrease bonding (if they exceed the debonding energy). In case of normal traction, we compute

the total adhesive traction p = ‖(pn, pt , pb)‖ and apply the debonding law in Eq. (4.12). In case

of normal compression, we compute the tangential adhesive traction p = ‖(pt , pb)‖, and add

simultaneous debonding and bonding effects.

Given the time-derivative of the adhesion intensity, β̇ , we have used a simple explicit Euler

integrator in order to compute the adhesion intensity for the next time step. We found that, for

our examples, interesting adhesion effects take place with rather slow bonding and debonding

dynamics, hence a simple explicit integrator sufficed.

After computing the adhesion coefficient for the next time step, we eliminate contacts where

debonding has completely taken place. Eq. (4.12) models a first order system that never reaches

β = 0, hence we apply full debonding when the gap function at a contact grows beyond a

threshold. This threshold is set based on a reference gap value, as discussed next along with our

results.

4.4 Results

Thanks to the implicit formulation of adhesion constraints, we were able to simulate in a stable

manner adhesion stiffness values in the range of 106 to 108N/m3 with time steps between 1ms

and 5ms.

Our simulation examples show the application of our algorithm to mass-spring cloth (Fig. 4.2),

and combined rigid and deformable bodies (Fig. 4.1). We have implemented a demo of swing-

ing cloth that is shown in Fig. 4.2, we demonstrate that the overall behavior of adhesion varies

little under varying mesh resolution. The candy demo depicts rich bonding/debonding effects,

and we have also applied our algorithm to a facial animation setting (Fig. 4.3), where the lips of

a character briefly stick to each other when opening the mouth. All our examples were rendered

using YafaRay.
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Figure 4.2: A swinging cloth hits a wall and adheres to it until it slowly starts debonding.

We have executed our demos on a 1.8-GHz Intel Core 2 Duo processor PC with 2GB RAM.

In the candy demo, the deformable objects are meshed with a total of approximately 10K tetra-

hedra, and the triangle meshes involved in continuous collision detection consist of a total of

28K triangles. The adhesion properties are dominated by the adhesion stiffness of the Jell-O,

which is 4× 107N/m3, and the Coulomb friction coefficient is µ = 0.3 for all objects in the

scene. As shown in Fig. 4.4, the average number of contacts in the simulation is 151, and a

maximum of 531. The 25-second simulation takes 20 minutes to compute (1.6 seconds/frame

or 0.4 seconds/timestep with 8ms timesteps), which we consider is reasonably fast for a con-

strained deformation problem of the size described. We also computed the same simulation

without adhesion constraints, and it took 13 minutes (1 second/frame). The main difference for

the cost is not the convergence rate, which is almost the same in both cases, but the number of

contacts. Without adhesion, contacts break easier, and the average number of contacts is 97,

and a maximum of 330, as shown also in Fig. 4.4.

4.5 Discussion

In this chapter, we have shown a model for adhesive contact that can be efficiently integrated

into existing constraint-based contact solvers. It retains the robustness of constraint-based con-
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Figure 4.3: Simulation of an opening and closing mouth, with adhesion taking place at the lips.
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Figure 4.4: Comparison of number of contact constraints and timings per timestep for the candy

demo from Fig. 4.1 with and without adhesion.

tact while allowing for rich and versatile adhesion effects under a diverse range of object types.

Moreover, the adhesion model incorporates a thermodynamics formulation of debonding
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from the mechanics literature. Connected to this feature, one limitation in our work is that

the formulation of bonding and the connection between friction and adhesion are not sustained

by a comparable thermodynamics approach. Regarding friction, we obtained plausible results

by selecting the most restrictive constraint out of Coulomb friction and tangential adhesion,

as discussed in Section 4.3.2. Another limitation of our algorithm is that it requires contact

tracking, not present in some of the available rigid body dynamics simulators, in order to evolve

the value of the adhesion intensity across frames.

Although this was not a major problem in our examples, relaxation solvers, such as Gauss-

Seidel, may suffer from slow convergence at times. This is a general limitation in constraint-

based contact formulations, and more efficient LCP solvers are still an issue under investigation.

Our model handles only well-defined interfaces between rigid and deformable bodies. There-

fore, another interesting extension to our work would be to integrate it with other materials, such

as viscoplastic ones, for which adhesion produces very interesting effects.

As far as we know, our method was extended in later publications, like [AO11], for cohesion

simulation in granular materials, using Smooth Particle Hydrodynamics (SPH).
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Chapter 5

Modeling and Simulation of a Human

Shoulder for Interactive Medical

Applications

Figure 5.1: Layered display of the anatomical parts of the shoulder simulated in our examples.
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In the previous chapter, a constrain-based formulation was presented for adhesive contact.

In this chapter, contact constraints will also be used, but this time they are applied to virtual

reality simulators, operating interactively.

Virtual reality simulators provide medical practitioners with a non degradable, versatile, and

realistic environment, in which novices may learn and try as much as desired. There is a vast

amount of examples of medical simulators, as discussed in various survey papers [LTCK03,

LHS06, BSHW07].

But the true explosion of medical simulators is still to happen, and one of the major obstacles

for this explosion is the difficulty to simulate in an interactive yet realistic manner the internal

human anatomical structures. These anatomical structures present challenges such as a very

diverse mechanical behavior, ranging from hard bone to soft fat tissue, and intricate contact

situations. Contact, with its associated problems of collision detection, collision response, and

friction handling, is often a computational bottleneck and, more importantly, a task with an

unpredictable computational cost, which severely complicates interactive simulation.

In this chapter, we present a combination of representations, simulation methodology, and

algorithms, geared at producing efficient yet plausible simulation of intricate internal human

anatomy. One of the key ingredients for our simulation methodology, described in Section 5.1,

is the choice of appropriate representations for dynamics simulation, contact handling, and vi-

sualization. A generalized definition of dynamics representation allows us to handle the binding

of surface representations, as well as the coupling of anatomical parts, all in an elegant and uni-

fied manner. More information regarding contact coupling, just like other related approaches,

can be found in chapter 2 (subsection 2.1.3). In Section 5.2 we discuss a modeling pipeline to

produce all the representations and the coupling. And the second key ingredient of our method-

ology, described in Section 5.3, is a contact handling algorithm that accounts in a unified yet

efficient manner for diverse dynamic representations, their couplings, and contact constraints.

Human joints are one of the situations where the challenges of biomechanical simulation

arise constantly, therefore we have selected the shoulder as the target example for demonstrat-

ing our results. Specifically, we show application of interactive shoulder simulation to virtual

arthroscopy [BGMFA06] and physiotherapy palpation [DLB94], as depicted in Fig. 5.6. With

our simulation methodology and carefully selected representations, we obtain interactive con-

tact, deformations, and even haptic feedback, on intricate situations involving multi-way contact
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of several anatomical parts.

All the work in this chapter implied a team effort of several people, where the author of this

dissertation was focused on the model creation pipeline, explained in subsection 5.2.2.

5.1 Representations

We use separate representations for the three main tasks in the simulation, namely, dynamics,

collisions, and visualization, which allows us to treat each task efficiently. The dynamics rep-

resentation acts as the link between all three representations, and it completely defines the state

of the collision and visualization representations. In this section, we describe the three repre-

sentations, as well as the generic data structures and mathematics for binding them together.

5.1.1 Dynamics, Collisions, Visualization

In our algorithm, we define a contact object as the elementary dynamic object with distinct

mechanical properties (e.g., a bone, a ligament, etc.). Its dynamics representation consists of a

state vector q and a velocity vector v that fully define the dynamics of an object. In the general

case, the velocity and state vectors are related as q̇ = Gv. All contact objects share a common

interface from the software engineering point-of-view, which allows us to handle them all in

a unified manner in the simulation algorithm to be described in Section 5.3. For rigid bodies,

the state vector q consists of the position of the center of mass and a quaternion for the orien-

tation, while the velocity vector v consists of the linear and angular velocities of the body. For

deformable bodies, we use a linear co-rotational finite element formulation [MKN+04], with

objects discretized using tetrahedral meshes. Then, the state vector is formed by the positions

of mesh nodes, and the velocity vector is formed by the velocities of the nodes.

For collisions and visualization, we represent each contact object using a collection of tri-

angle meshes. The topology of these meshes is fixed, and their geometry is fully defined by

the positions of their vertices, which in turn are defined by the dynamics representation as we

describe next.
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5.1.2 Binding Dynamics and Surfaces

The position of every vertex in a triangle mesh is computed using a generic point entity. In

essence, a point binds a vertex and a generic contact object, by a definition of the vertex position

as p = f (q). For rigid bodies, the vertex position is defined as p = c+Rr, where c and R are

the position and orientation of the rigid body, and r is the position of the vertex in the body’s

local reference system. For deformable bodies, we assume each surface vertex to be embedded

inside a tetrahedron. Then, the vertex position is defined as p = ∑
4
i=1 wiqi, where the 4 qi values

are the positions of tetrahedral nodes, and the wi are barycentric coordinates. Full details about

the construction and embedding of the tetrahedral mesh are given in the next section.

The point entity also relates the velocities of mesh vertices and the velocity vector of a

contact object, by simple differentiation of the position, ṗ = Jv, with J = ∂p
∂qG. Each specific

point entity, depending on the type of contact object it acts on, stores this relationship in a

compact manner. For deformable objects, for example, J is a sparse matrix where the only non-

zero columns are those due to the tetrahedral nodes that affect the surface vertex. It is important

to point out that velocities are always linearly related.

But one of the main features of our generic point entity definition is that it allows us to

define forces and constraints on surface vertices in a unified manner, independently of the type

of contact object. Given the relationship between the velocity vector and the velocity of a vertex,

J, forces on a contact object can be computed from surface forces as Fq = JT Fp. The linear

relationship between velocities and between forces is the classic manipulator Jacobian from

robotics.

For visualization purposes, we store mesh connectivity in the GPU by exploiting buffer

objects. Every time a contact object is modified, we simply need to send the state vector q to

the GPU.

5.2 Modeling

In this section, we list the anatomical parts of the shoulder that we have accounted for in our

simulations, and we describe our modeling pipeline to produce the simulation scenario where

the various representations of the different parts are integrated.
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Id Anatomical part Render CD FEM Couplings

1 Scapula 10224 105 NA 3, 4, 5, 6(x2), 7, 9

2 Humerus 5189 112 NA 2(x2), 3, 4, 5, 7, 8(x2), 11

3 Supraspinatus 1716 86 87 1, 2

4 Infraspinatus 2136 96 129 1, 2

5 Subscapularis 2424 100 158 1, 2

6 Coracoacromial 1632 146 65 1(x2)

7 Coracohumeral 522 60 86 1, 2

8 Transversehumeral 264 28 NA 2(x2)

9 Labrum 636 120 96 1, 10

10 Labrum Tendon 128 128 122 9, 11

11 Biceps Tendon 264 264 NA 2, 10

Table 5.1: List of anatomical parts simulated in the arthroscopy example, with the number

of triangles of their visualization surface (Render), number of triangles of the collision surface

(CD), number of tetrahedra of the dynamic representation (FEM), and list of couplings to other

parts (indicated by their ids). ‘x2’ means that the coupling with another anatomical part takes

place at two locations. The number of tetrahedra does not apply for rigid bodies.
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5.2.1 Description of Anatomical Parts

The anatomy of the shoulder is full of diverse parts such as bones, muscles, ligaments, carti-

lages or tendons. The result is a compact and heterogeneous volume where it is not easy for

unexperienced persons to discern one part from another. In order to develop useful and interest-

ing applications, we need to simplify the anatomical complexity and focus on those parts that

are meaningful for our application.

For example, in the case of arthroscopy, there are some bulky parts that are not interesting

for the surgeon, such as the subacromial bursa or the deltoid muscle. In Fig. 5.1, we show the

parts that we have accounted for in our arthroscopy example. We model the bones, i.e., the

scapula and humerus, as rigid bodies. Moreover, due to their limited range of motion, we also

model the biceps tendon and the transversehumeral as rigid bodies. All other parts are modeled

as soft bodies. Table 5.1 indicates pairs of parts that are coupled using zero-length coupling

springs. Note that some parts are coupled at two different locations to the same bone. When

a large surface of a soft body is coupled to a bone, we disable collision detection between the

two objects, since there is no relative motion between them. We do this, for example, in the

coupling between the scapula and the labrum.

For physiotherapy palpation, on the other hand, the criterion for selecting the interesting

parts is almost the opposite as for arthroscopy, because the practitioner focuses mainly on the

outer anatomical layers. Therefore, for physiotherapy palpation we incorporate the deltoid mus-

cle.

5.2.2 Model Creation Pipeline

The input to our pipeline is a set of triangle meshes that describe the surfaces of the various

anatomical parts. These meshes can be obtained by scanning real parts with a standard 3D

scanner, or by manual authoring. We use these meshes as the visualization representations in

our examples.

For collision handling purposes, we apply standard mesh simplification techniques to ob-

tain low-resolution approximations that can be efficiently handled interactively. Then, for the

soft-tissue parts, we create the tetrahedral meshes that define the dynamic representation by em-

bedding both the visualization and collision meshes. We start by enclosing the surface meshes
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Figure 5.2: From left to right, visualization, collision, and dynamic meshes for the coracoacro-

mial ligament.

with a bounding box, we subdivide it regularly to the desired cell resolution, decompose each

cubic cell into five tetrahedra, and finally we eliminate those tetrahedra that do not intersect the

volume enclosed by the visualization and collision meshes. Thanks to the embedding-based

simulation, plausible deformations are possible even with rather coarse tetrahedral meshes.

Fig. 5.2 shows the visualization, collision, and dynamics meshes for the coracoacromial lig-

ament. The resolution of all meshes for the arthroscopy example is listed in Table 5.1.

In order to define couplings between a soft body and a rigid bone, we manually select

tetrahedral nodes of the soft body that should be coupled to the bone, and we set zero-length

binding springs at those nodes. Both end-points of a binding spring are fully defined by the

state of their corresponding contact objects, using the point entity defined in Section 5.1.2. For

couplings between soft bodies, we manually select tetrahedral nodes from both bodies, and set

binding springs at those locations. Nodes from two bodies a and b are typically not collocated,

therefore, one end-point of the binding spring is defined directly by the state of a tetrahedral

node, while the other end-point is defined through barycentric interpolation inside the enclosing

tetrahedron in the other body.

Due to the intricate layout of anatomical parts, it would be a daunting modeling task to en-

sure that all parts are intersection-free at their undeformed state. Instead of enforcing this, we

allow the objects to intersect in the undeformed state, but we define an initialization state where

they are intersection-free. We do this by deforming each tetrahedral mesh (and thus the visual-

ization and collision meshes as well) using a cage-based deformation technique [JMD+07], as

depicted in Fig. 5.3. In the simulation, the tetrahedral meshes are then initialized at a deformed
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Figure 5.3: Cage-based deformation of the coracohumeral ligament to ensure a collision-free

initial state. In blue, the collision meshes. Notice how in the undeformed state (on the left), the

collision meshes are intersecting.

state, and as soon as the simulation starts they move to a minimum energy situation. As this

work is performed by several authors, the author of this thesis was the person responsible for

modeling and creating these intersection-free set-ups.

5.3 Simulation Algorithm

In this section we explain the main features of the algorithm that allows the simulation, in a

unified yet efficient manner, of complex anatomical scenarios composed of objects with diverse

mechanical behavior. At the same time, this algorithm handles elegantly coupling and contact

constraints, making them independent of the objects that they act on.

5.3.1 Implicit Integration of Dynamics

Given state and velocity vectors q and v that group the state and velocity of all contact objects

in the scene, the dynamics of the simulation are discretized with the ODEs:

Mv̇ = F

q̇ = Gv
(5.1)

where M denotes the mass matrix and F is the force vector. We numerically integrate the ODEs

using the (implicit) backward Euler method with linear approximation of forces, which yields a
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velocity update

Av = b, with (5.2)

A = M−∆t
∂F
∂v
−∆t2G

∂F
∂q

,

b = ∆tF(v0,q0)+

(
M−∆t

∂F
∂v

)
v0.

Eq. (5.2) is solved using a Conjugate Gradient (CG) solver, and the result is the unconstrained

velocity of the contact objects.

In a simulation with three independent objects, Eq. (5.2) can be writen as:
A11 0 0

0 A22 0

0 0 A33




v1

v2

v3

=


b1

b2

b3

 (5.3)

All non-diagonal terms of A are zero because there are no couplings (i.e. no forces) acting

between different objects in the simulation. Our algorithm makes use of this fact and uses the

CG solver efficiently, solving Eq. (5.2) for each object independently.

5.3.2 Coupling Islands

For each pair of anatomical structures that are solidly attached, we define a coupling between

their corresponding contact objects. Our definition of coupling is general and is able to handle

any pair of contact objects. Specifically, each coupling consists of two general semicouplings

and, from a software engineering perspective, we define different semicoupling implementa-

tions based on the types of contact objects in our simulation.

For each coupling, we set zero-length springs between the two coupled contact objects, as

shown in Fig. 5.4. These springs add new forces to the system, modifying the structure of the

terms in Eq. (5.2). With coupled objects as in Fig. 5.4, the new system structure is:
A11 A12 0

A21 A22 A23

0 A32 A33




v1

v2

v3

=


b1

b2

b3

 (5.4)

The system is no longer block-diagonal, and the right-hand side b is also modified. Given a

zero-length spring between two points pa and pb, the spring force acting on point pa is Fpa =
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Figure 5.4: Example of coupled objects using springs. Objects (1) and (3) represent rigid

bodies, while object (2) represents a deformable body.

−k(pa− pb), and the force acting on object a is Fqa = JT
a Fpa . Off-diagonal terms in A are

due to non-zero derivatives of the form ∂Fqa
∂qb

= kJT
a

∂Fpb
∂qb

. These derivatives can be efficiently

computed in a unified manner for arbitrary couplings making use of our point entities defined

in Section 5.1.2.

The solution to the velocity update can no longer be executed by doing an independent

CG solve for each object. A naïve approach would then compute one global CG solve for the

complete system, but we optimize this by identifying sets of objects that are coupled to form

a coupling island. Two contact objects a and b belong to the same coupling island if and only

if they share at least one coupling. Then, an independent CG solve can be executed for each

coupling island.

Assuming that couplings are not dynamically created or eliminated, we define coupling

islands as a preprocess. In the modeling stage described in Section 5.2, we first define the vector

of contact objects, and then a vector of coupling entities. Once all structures and interactions

are defined, we initialize coupling islands with individual contact objects, and we grow these

coupling islands by traversing the vector of coupling entities.

At runtime, we need to assemble the system (A,b) of each coupling island prior to the CG

solve. In order to do this, we first assemble the system matrices and right-hand-sides of the

individual contact objects and coupling entities, and then we merge them.

5.3.3 Contact Islands

In order to handle contact efficiently yet robustly, we follow the constraint-based formulation

in [OTSG09]. Given a pair of contact points pa and pb, we define a non-penetration constraint

as an algebraic inequality g(pa,pb) = nT (pa−pb)≥ 0, where n is the contact normal.
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Figure 5.5: A contact island composed of two individual contact objects, i.e., the tools (nc1)

and (nc2), and one coupling island, formed by contact objects (1), (2) and (3).

Constraints are then formulated semi-implicitly and transformed into velocity constraints

like Java + Jbvb ≥ c, where the Jacobians are computed using the general point entities de-

scribed in section Section 5.1.2. These velocity constraints, together with Signorini’s contact

condition [DDKA06], are added to Eq. (5.2), leading to a Mixed Linear Complementarity Prob-

lem (MLCP), where contact forces are expressed as JT λ . The full MLCP that defines the con-

strained velocities can be expressed as:

Av = JT v+b,

0≤ λ ⊥ Jv≥ c. (5.5)

We solve this MLCP using an iterative scheme composed of two nested loops, as explained

in [OTSG09]. First, a Jacobi iteration over the velocities defines the outer loop and decomposes

matrix A into its diagonal and lower and upper triangular parts, A = DA−LA−UA. With this

decomposition, the iterative MLCP is transformed into its corresponding LCP:

0≤ λ ⊥ Bλ ≥ d, with

B = JDA
−1JT ,

d = c−JDA
−1 (b+(LA +UA)v) . (5.6)

Then, the LCP is solved to compute λ using the Projected Gauss-Seidel (PGS) method (which

represents the inner loop), and the current iteration of the constrained velocity is obtained.

Instead of solving one large MLCP for the complete scene, we identify contact islands and

formulate and solve one MLCP for each contact island. Two coupling islands belong to the
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same contact island if and only if they share at least one contact constraint. For the example in

Fig. 5.5, where a single contact island is composed of two individual contact objects and one

coupling island, the system matrix can be written as

A =


Ac 0 0

0 Anc1 0

0 0 Anc2


with the submatrix for the coupling island expressed as

Ac =


A11 A12 0

A21 A22 A23

0 A32 A33


It is important to note that the off-diagonal terms of matrix A do not have much impact on

the efficiency of the constrained solve, as opposed to the unconstrained solve discussed earlier.

The reason is that the lower and upper triangular parts of A affect only the right-hand side of

the LCP, d, as shown in Eq. (5.6), and are not visited during the iterations of PGS.

In contrast to the unconstrained update, the system matrix for each contact island is not

assembled explicitly. Instead, an object-oriented processing is followed, accessing each object’s

data when required by the iterative solver. Based on an implementation of contact islands that

deals with contact objects directly, we have extended it to seamlessly deal with coupling islands.

From a software engineering perspective, we achieve this through abstraction, by ensuring that

coupling islands share the same interface as contact objects.

5.4 Results

We have executed our experiments on a quad-core 2.4 GHz PC with 3 GB of memory (although

we have only used two cores, for the visual and haptic loops) and a GeForce 8800 GTS. For

haptic rendering, we have used the method by [GO09]. All the modeling tasks and the cage-

based deformation have been executed using Blender 3D, while the real-time renderings have

been performed with OGRE.

Fig. 5.6 shows images of the two applications where we have tested our interactive shoulder

simulator, arthroscopy and physiotherapy palpation. Our arthroscopy example does not include
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Figure 5.6: Interactive simulations in virtual arthroscopy (left) and physiotherapy palpation

(right).

a realistic portal-based interaction [BGMFA06], but this was not the purpose of our work. In

the palpation application, we simulate two finger models, one touching external geometry and

another one the internal anatomy. The finger models are linked through a spring that models

skin stiffness.

In the arthroscopy example, the scene has 50 contacts at rest-state. During some sample

haptic interactions that we performed, the average number of contacts was 65, and it reached a

maximum of 153. The complete simulation runs at an average of 50 fps. Note that we ensure a

1 kHz haptic update rate thanks to a multi-rate haptic rendering approach.

5.5 Discussion and Future Work

The main conclusion that can be extracted from our results is that our simulation methodology

is successful in achieving interactive simulation of complex human joints for medical applica-

tions. Key to this success are the optimization of representations, and the efficient handling of

couplings and contacts in the constraint-based dynamics solver.

The approximations that we carry out have some implications on the accuracy of the simu-

lation. For example, the couplings between the various parts are not fully anatomically correct,

and sometimes we partially eliminate the possibility of muscles to slide on top of bones. In

order to fully simulate the shoulder anatomy, we would need to incorporate the bursa, but this

structure produces even more intensive contact situations that would be difficult to handle in-

teractively. The fact that our contact handling is based on iterative solvers prevents us from
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guaranteeing a certain minimum frame rate, although we did not see this to be a problem in

practice.

Besides addressing the limitations of our approximations, there are many possible avenues

for future work. We are working together with both arthroscopy and physiotherapy experts

to assess the quality of our models and guide further developments. In arthroscopy, many

medically interesting interactions are related to tissue cutting and to suture. Therefore, a fully

fleshed arthroscopy simulation would require interactive simulation of topological changes and

contact with thread models.

In the next chapter, we present a model creation pipeline more general than the one shown

in subsection 5.2.2. This new pipeline has tools that enable developers to create complete VR

applications, capable of being executed in distributed multi-display environments.

104



Chapter 6

BlenderCAVE: Easy VR Authoring for

Multi-Screen Displays

In the previous chapter, we presented a VR interactive simulator applied to medical purposes.

One of the highlights of this simulator is the model creation pipeline that we used to configure

each virtual organ. Thanks to this pipeline was possible to create three representations for each

body (meshes for collision detection, simulation and rendering) and to deform them in order to

become collision-free at the beginning of the simulation. In this chapter, another asset creation

pipeline is presented, this was already introduced in the chapter 1 (section 1.3). This pipeline is

focused at the creation of VR applications for multi-display environments.

Today, virtual reality (VR) is present in many and very diverse application domains, some

of them are illustrated in figure 1.1. VR developers are expected to have expertise not only in

computer graphics (CG), but also in the problem domain and in the development of sophisti-

cated software systems. Many of them are explained in chapter 2, section 2.3. Such systems

may require handling multiple processes, message passing, dynamic memory management, and

a variety of process synchronization techniques. But, due to the hardware aspects of VR, de-

velopers may also be concerned with low-level issues such as device drivers for particular I/O

devices or techniques to generate multiple stereoscopic views. In addition, VR applications

involve an artistic component, specially in order to improve the realism and immersion of the

virtual worlds generated. Therefore, they also need the contribution of artists who model, tex-

ture and animate virtual characters and objects. To ease the job of VR developers, it is desirable

to integrate content creation tools, CG engines, and hardware abstraction layers that make the
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development independent of specific I/O devices, and also allow preliminary testing on devices

different than the ones of the final product.

As shown in section 2.3 of chapter 2, the needs of VR developers have already been an-

swered to a large extent by existing tools. However, developers still miss tools that close the

complete creation pipeline, allowing an automatic deployment of an application designed on a

sandbox onto the final VR hardware.

Figure 6.1: Two students play a collaborative game on a CAVE. The video game (both art and

logic) was quickly created using the visual editing tools of Blender. Then, our easy-to-integrate

BlenderCAVE framework manages a distributed rendering architecture based on the Blender

Game Engine that generates the video output for all screens in the CAVE. The stereoscopic

response was deactivated in order to capture this figure.

This work introduces a framework, which we refer to as BlenderCAVE, for the easy devel-

opment of multi-screen VR applications on a virtual sandbox. After an evaluation of existing

content editing tools and CG render engines (detailed in Section 6.1), we have opted for the

Blender Game Engine (BGE) [Blea] as the base engine for our framework. Then, the frame-

work includes two major components. First, a simple virtual camera setup, described in Sec-

tion 6.2, defines the content to be output on each screen. Second, as described in Section 6.3, a

distributed architecture and a lightweight communication protocol manage the application state

and synchronize the output on the various screens.

We demonstrate BlenderCAVE through several applications displayed on an immersive

CAVE projection system [CNSD93]. The highlight of the applications is a multi-player videogame
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(shown in Fig. 6.1), which was quick-to-design and easily ported from a desktop environment

to the CAVE.

6.1 Requirements and Selection of the Base Engine

Our approach to the design of a framework for easy development of multi-screen VR appli-

cations has been to augment one of the many existing high-quality CG render engines with

functionalities to efficiently support multi-screen projection. In this section, we discuss the de-

sired features of the base engine, we compare several high-quality engines, and we present the

particular features that steered our decision toward Blender Game Engine (BGE).

From the CG point-of-view, the engine should support state-of-the-art rendering and ani-

mation features: programmable shaders, animations based on bones, simulation of rigid and

deformable bodies, generation of stereoscopic video output, and extensibility through plug-ins

and scripts.

On top of these features, it is desirable if the render engine includes an integrated 3D WYSI-

WYG scene compositor, i.e., a sandbox. We look for a solution that allows modeling, texturing

and animating directly the objects that will be included in the VR application.

Other desirable features include multi-platform availability, as well as the possibility to

execute the VR application on distributed heterogeneous systems. Source code access enables

the possibility to implement new capabilities when necessary, and a well-stablished community

of developers and artists is a good indication of further evolution of the engine, thus favoring a

longer life-cycle of the VR application.
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In our search for an engine that fulfills all or most of the desired features, we have evaluated

in detail the following list of high-quality render engines: Unreal 3™ [Epi] from Epic Games

Inc, CryEngine 2™ [Cryb] from Crytek GmbH, EON Studio™ [Eon] from EON Reality Inc,

and the open source engines Ogre 3D (v. 1.6.5) [OGR], and BGE (v. 2.49) [Blea]. Other

possible engines that we have considered are: proprietary game engines such as Unity™ [Unib],

from Unity Technologies, Id Tech 5™ [Id ] from Id Software, and Unigine™ [Unia] from

Unigine Corp, or open source engines such as OpenSceneGraph [OSG], Crystal Space [Crya],

Irrlich 3D Engine [Irr], and Id Software’s Quake IdTech 3 [Id ].

Our list is clearly not comprehensive, but we believe that it covers a set of highly repre-

sentative engines. We chose Unreal, CryEngine, EON, Ogre and BGE for detailed evaluation

for various reasons. Unreal and CryEngine are high-end engines used for top-class commercial

video games, which is a good indication of their quality. EON, on the other hand, is an engine

particularly oriented to multi-screen VR setups. And, finally, Ogre and BGE offer high-quality

CG with the addition of open-source advantages. Moreover, BGE provides a content creation

framework that could greatly ease application design. Table 6.1 compares these five engines

based on CG quality features, integrated content creation and control possibilities, and further

extensibility.

After the evaluation, we decided to select BGE as our base engine. The main reason is its

interesting balance of high-quality render engine with integrated content creation and sandbox.

Another positive feature is its ease of extensibility. It contains a large API based on Python,
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and it allows the connection of specific device drivers by implementing a binding between the

driver’s library (as long as it is written in C/C++) and a Python class. Moreover, source code

access allows the implementation of additional capabilities.

Given our target application, i.e., creation of VR applications for multi-screen displays,

we also pay special attention to the capabilities of BGE in terms of stereoscopic and multiple

video output. In its standard version, BGE supports five built-in stereoscopy modes (Pageflip,

Syncdouble, Anaglyph, Side-by-Side and VInterlace), which can be toggled using a GUI con-

trol [MSO+09]. BGE has single-window output, but it is possible to switch a built-in mode and

draw many windows on the same screen in a tiled manner, or direct each window to a different

screen on a multi-screen system. At first, this feature seemed attractive for our application, but

it does not scale well as the number of windows increases. As it will be described later in Sec-

tion 6.3 we discarded BGE’s built-in multi-screen functionality, and we designed a distributed

architecture.

6.2 Virtual Camera Setup

Our BlenderCAVE framework includes two main components, a virtual camera setup that de-

fines the output for each display, and a distributed architecture to manage the application. This

section describes the virtual camera setup, including the definition of camera frustums, and a

master-slave navigation approach.

6.2.1 Configuration of Camera Frustums

Given a VR scene and a target multi-screen display, we define a Virtual Camera Cluster (VCC)

that associates one virtual camera to each screen. The correct compositing of the images on

the multi-screen display requires a careful selection of parameters for each camera and a syn-

chronized transformation of all cameras as the user navigates through the scene. Our prototype

implementation is limited to planar screens, and then the configuration of each camera reduces

to adjusting the values of ModelView, Projection and Viewport transformations. BGE includes

five additional video output modes for dome-shaped screens [Bleb], which would allow sup-

porting also dome-shaped multi-screen displays.

The VCC maps the geometry and topology of the projection system to the camera frustums
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Figure 6.2: From left to right, three possible setups for our reconfigurable 4-wall CAVE: wall,

cube, and amphitheatre. The top row shows the screens and the mirror-based projection system.

The bottom row shows frustum setups for an observer located at the center of the CAVE. If the

observer’s position is tracked, all four frustums need to be dynamically reconfigured, otherwise

only the right and left frustums need to adapt to the CAVE’s configuration.

on BGE. All the cameras of the VCC are located at the same point, called local origin, which

corresponds to the position of the observer in the VR scene. If the VR installation includes a

tracker of the observer, its position is mapped to the local origin. The four corners of the near

planes of the various cameras are configured (up to a scale factor) with positions and orientations

that respect the relative transformation between the observer and the screens in the real world.

Then, the local origin and the corners of the near planes define the perspective angles of the

cameras frustums. With this approach, the images captured by the various cameras correctly

match at the borders of the screens, the union of the frustums covers all the visible volume in

the VR scene, and the frustums do not intersect. Fig. 6.2 shows three possible configurations of

the VCC for the particular type of configurable 4-wall CAVE used in our experiments.

6.2.2 Master-Slave Navigation

We assume that the physical screen setup remains invariant while the VR application is in use,

therefore, the relative transformation between the various camera frustums depends only on the
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local origin, i.e., the observer’s position w.r.t. the physical setup. Based on this observation,

we perform camera navigation in a master-slave manner, computing the transformation of a

master camera based on the user’s navigation, and then computing the transformation of the

slave cameras relative to the master. In our experiments, we have selected the frontal camera

as master camera. In BGE, the master-slave VCC is programmed as a hierarchy, represented

schematically in Fig. 6.3, which includes the user, the master camera, and the slave cameras.

Figure 6.3: BGE model of the master-slave camera hierarchy. The master camera is connected

to the user entity, and all other cameras are defined relative to the master camera.

In our prototype implementation, we use a first-person navigation mode. In the VR scene,

the user is represented as an invisible human-height character contained on a simple bounding

box. This bounding box constitutes the user entity in BGE. Each camera in the master-slave

VCC has an additional entity, and they are all connected in a hierarchical manner to the user

entity.

During navigation, the user moves and orients the virtual workspace through the VR scene,

and these transformations are applied to the user entity. Then, the camera transformations are

computed automatically based on the tracked local origin. User navigation could be controlled

in various ways: using a mouse, a keyboard, a wiimote, etc. Additional controls or keys can be

assigned to gear other motions of the virtual character, such as jumping, crouching, or leaning.

BGE also handles reactive collisions with the environment during camera navigation, using the

bounding box of the user as collision primitive.
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6.3 Communication System Architecture

Given a VR application designed on BGE, the target multi-screen display system, and the VCC

that defines the camera-screen correspondence, we have designed a distributed rendering archi-

tecture that controls the video output of each screen. In this section, we describe the elements

that conform this architecture and their main features, paying special attention to the following

issues: maintaining a consistent application state across all elements, synchronizing the video

output on all screens, and responding to external inputs (i.e., managing input peripherals).

6.3.1 Master-Slave Distributed Architecture

To compute the video output for the multiple screens, we have designed a (possibly heteroge-

neous) distributed architecture, with one PC per screen. On each PC, we execute one instance

of BGE, which computes the image as seen from one of the cameras in the VCC, and outputs it

to the corresponding screen.

To synchronize the rendered output, we set a common refresh rate on all BGE instances. The

refresh rate is maintained both at the application level, i.e., for logic and physics updates, and at

the GPU render level. Even though our architecture supports the use of heterogeneous PCs for

the various screens, in our prototype implementation the refresh rate is limited by the slowest

machine. For future versions of the framework, one could consider balancing the rendering load

among the various PCs in a more efficient way.

We manage the application state and handle peripheral inputs following a master-slave ap-

proach. The PC in charge of rendering the master camera in the VCC plays the role of master in

our architecture, and it communicates state changes and user input to the other PCs. BGE pro-

vides simple tools to program the application logic as a state machine. In particular, it provides

logic bricks that react to events, and these logic bricks act on the application state. Events may

be produced by internal logic conditions or by input devices.

6.3.2 Communication Protocol

We consider two different communication modes in our master-slave architecture: normal oper-

ation and initialization. During normal operation, the master handles events produced internally

by its own application logic as well as events produced by input peripherals. If an event is trig-
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gered, the master communicates this event simultaneously to all slaves. When a slave receives

a packet, it updates its local version of the user entity in the VCC, computes the new position

and orientation of its render camera, and a script routine triggers the event and executes its cor-

responding logic bricks. All slaves execute the same application logic, therefore by reacting to

the same event as the master, and given that they maintain the same refresh rate, all local copies

of the application state remain synchronized.

In our experiments, we used as peripherals standard keyboards and mice. Then, the infor-

mation to be communicated by the master consists of: the position and orientation of the user

entity, the orientation of the master camera, the keys that have been pressed or released, and

the current position of the mouse. This information can be coded in very short messages. In

our CAVE, the PCs are connected by less-than-half-meter-long gigabyte ethernet cable, which

allowed us to send messages using UDP Multicast without package loss. The combination of

small messages, fast network, and little protocol overhead, produce negligible system latency,

as discussed in detail in the next section. The communication protocol could be extended to

handle other types of events, such as random events or large state modifications due to phys-

ically based simulations. Given the small message size and negligible latency in the current

prototype, there is plenty of room for additional communication payload.

The initialization mode is executed when a new slave PC joins the system. In this situation,

the slave PC sends a request for a full-state update to the master, and the master responds with

a standard UDP message containing the full state information. In addition to camera settings

and input events, the full state may contain information such as the configurations of all moving

objects in the scene, clip and frame numbers for animated characters, internal attributes and

flags, etc. Moreover, at initialization, a slave needs to identify the particular camera in the VCC

that it should render. We solve this issue by assigning to each slave camera in the VCC an id

corresponding to the network address of the slave PC in charge. Then, a slave can discriminate

its camera information simply by comparing the camera id with its own network address.

In our experiments, discussed in detail in the next section, the application did not suffer

synchronization issues. In applications with a complex logic, however, it might be convenient

to execute periodic full-state synchronizations.

The communication protocol is executed by BGE as a Python script. This guarantees a

complete transparency of the communications across platforms, and enables the use of het-
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erogeneous machines, with different operating systems. In our tests we have combined nodes

running Microsoft Windows and Ubuntu Linux with no problems. All the packages are coded

using a Python dictionary format, and we use the cPickle library to serialize Python objects to

plain text and viceversa.

6.4 Implementation and Experiments

In this section, we describe first our CAVE-like installation and other hardware details. Then,

we discuss the process for setting up a VR application using BlenderCAVE. Finally, we discuss

the test applications we have implemented, as well as performance results.

6.4.1 Our Visualization System

The visualization system used to test BlenderCAVE is a RAVE II (Reconfigurable Advanced

Visualization Environment), a CAVE-alike system with four screens designed by Fakespace

Inc. The main difference with a conventional CAVE system is that the side screens of the

RAVE can be reoriented to create different configurations of the immersive space (see Fig. 6.2).

Each display module has a screen of dimensions 3.75 x 3.12 meters.

The displays use active stereo projectors and CrystalEyes shutter stereoscopic glasses. The

projectors are driven by a cluster of 4 PCs with NVIDIA Quadro FX 4500 graphics cards,

and connected through a Gigabyte Ethernet network. The PCs also carry GSync hardware to

synchronize the pageflip on all the graphic cards. The cluster can execute Windows XP or

Ubuntu Linux, both of which have been used on BlenderCAVE tests.

6.4.2 Setting up and Running BlenderCAVE

BlenderCAVE is programmed as a set of scripts that control the VR application logic on BGE.

Given a certain VR application on BGE and a cluster of PCs that send video output to a multi-

screen display, setting up BlenderCAVE to drive the multi-screen display is an extremely easy

task. First, one needs to include the VCC hierarchical entity on every instance of the VR

application. The BlenderCAVE scripts are associated to the VCC, hence they are automatically

included. Note that the camera settings of the VCC should be adjusted to match the specific
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Figure 6.4: Mountain scene (15727 triangles) displayed on a CAVE. The scene is rendered

with shadow mapping, multi-texturing (9 layers), 4 normal mapping passes, and screen-space

ambient occlusion.

display, as described in Section 6.2.1. If a display installation is permanent, then the VCC may

be defined only once and imported in multiple applications. Setting up BlenderCAVE to drive

our CAVE system takes less than two minutes once the VCC is defined.

Additionally, one needs to set the camera ids for the various PCs, as described in Sec-

tion 6.3.2, and adjust the basic rendering settings of BGE (i.e., fullscreen rendering and activa-

tion of the pageflip option). In our examples, we used a 1024×768 resolution for each screen

and a refresh rate of 100Hz, but higher resolutions and refresh rates are supported.

6.4.3 Test Applications

We have tested BlenderCAVE on three different VR applications. Two of these applications,

the mountain scene in Fig. 6.4 and the shark scene in Fig. 6.5, intend to demonstrate the eas-

iness to create applications with high-quality graphics and render them on a CAVE. The third

application, the game in Fig. 6.1, gives a glimpse of the great possibilities for CAVE-oriented

application development. In all the images shown in this chapter, stereo output was disabled,

but the system runs in full stereo mode.

The mountain scene in Fig. 6.4 is composed of 15727 triangles and shows dynamic shadow
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computation using shadow maps as the sun rises and sets. We used a high-res shadow buffer of

2048× 2048 pixels. More interestingly, the mountains are render using multi-layer texturing,

with 9 texture layers, 4 simultaneous normal mapping passes, and an additional pass of screen-

space ambient occlusion.

The sharks in Fig. 6.5 are composed of 7502 and 5197 triangles each, and are animated

using bones and a skinning technique. Both sharks are rendered using a diffuse texture and a

pseudo environment map.

Fig. 6.5 also demonstrates the effectiveness of our VCC camera setup. Notice how the

images of the sharks are projected onto the seams and corners of the CAVE, and there is barely

any noticeable distortion. In this example, the location of the physical camera is being used as

local origin for the VCC.

Our last test scene is a collaborative videogame, shown in Fig. 6.1, where two users fight

against a group of zombie skeletons. The floor is rendered using normal mapping, and the

skeletons (8609 triangles each) are animated using bones and predefined animation clips. The

application maintains the target frame rate (50Hz, stereo) with up to 15 skeletons, for a total of

135553 triangles in the scene.

The videogame was initially designed as a single-player game using the Blender content

creation tool, with logic bricks and Python scripting. The major result proved with this scene

was that BlenderCAVE allowed extremely simple adaptation of the videogame to a multi-screen

display, i.e., our CAVE. Porting the videogame to BlenderCAVE required the definition of the

VCC (approximately 1 hour, including tests, but this needs to be done only once if the configu-

ration of the CAVE is static), adding the BlenderCAVE scripts to the application (done in just 1

minute), and, of course, installing the application in all PCs in the architecture.

We have also measured the communication latency and bandwidth in our system. Thanks

to the use of UDP Multicast and our event-driven protocol, the network traffic is very low. We

measured the total traffic from the master to all slaves in situations with frequent camera motion

and button-click events, and we reached peak packet sizes of just 12kB. To measure network

latency, we timed the round trip of a packet between the master and a slave, which peaked at

just 16µs. As a conclusion, with our Gigabyte Ethernet network, communication latency is not

an issue.
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Figure 6.5: Shark scene displayed on a CAVE. Notice the lack of distortion as the images of the

sharks are projected onto the seams and corners of the CAVE, demonstrating the effectiveness

of the VCC setup.

6.5 Discussion

In the past, the creation of a multi-user VR application for a CAVE entailed the integration of

I/O peripherals in the render engine, setting up and coordinating multiple instances of the render

engine to drive all screens of the display, and importing art content in the rendering application.

This chapter shows that the BlenderCAVE framework allows a much simpler development of

complex and interesting VR applications for a CAVE-like display. Using BGE as base render

engine, and taking advantage of Blender’s content creation possibilities, BlenderCAVE aug-

ments the engine to easily direct the video output to a multi-screen display.
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There are, however, multiple directions in which the features of BlenderCAVE could be

improved or extended. For more general VR applications, it will be necessary to provide support

to many I/O peripherals. This can be done by integrating one of the existing VR libraries for

hardware abstraction, possibly through Python-based extensions.

As discussed in this chapter, the current communication protocol is particularly efficient

for event-driven state changes, but applications with a complex state, such as physically based

simulations, may require modifications. Under a complex state, there is a trade-off between

distribution of state computations, communication of state updates, and network bandwidth.

The current framework is also limited in terms of the tight connection between BGE instances

and output screens. Currently, each screen is driven by a different BGE instance, running on a

different PC. For tiled displays, it might be convenient to distribute rendering load differently,

perhaps with the same machine driving several displays. The critical factor should be the mini-

mization of the computing resources, subject to fulfilling the desired refresh rate, which makes

the problem application-dependent.

Since BlenderCave was released as open-source, other research teams have been inter-

ested in it and they have contributed with new functionality. For example, the Computer

Science Laboratory for Mechanics and Engineering Sciences (LIMSI-CNRS), in France, has

redesigned BlenderCave refactoring its API, making it easier to use. In addition, support for

different screen configurations has been added [Lim], and some other works have been pub-

lished [PQTK13b, PQTK13a, PQTK12] extending the functionality of BlenderCave. Finally,

other middlewares, like CaveUDK [LCC+12], have been designed taking BlenderCave as in-

spiration, among others [AMQ+12]. In near future, we expect more people be interested in

BlenderCave as though more support for newer peripherals, and more state-of-the-art capabili-

ties, are added to the source code.

BlenderCave source code, templates and examples can be downloaded from:

http://blendercave.limsi.fr/doku.php

(Old site: http://www.gmrv.es/BlenderCave/index.html)

In the next chapter, we present the overall conclusions and the future works of our entire

dissertation, as though, we describe the limitations and the future lines of research of all the

work presented in previous chapters.
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Chapter 7

Conclusion

As seen in previous chapters, developing VR applications is one of the most demanding tasks

known in the industry of software. Not only an application is required that can manage complex

algorithms for simulation, animation and rendering of virtual bodies, but also it has to deal

with the assets and their accompanying data structures (collision detection, physics and visual

meshes, textures, rigging information, animation poses and much more). In addition, a VR

application has to operate efficiently with I/O peripherals in order to process user input and to

produce visual and/or haptic response through them. The response has to be generated as fast as

possible and at interactive rates, otherwise, the sensation of immersion could be lost. In order

to accomplish these requirements, it is required the employment of multidisciplinary teams of

highly-skilled professionals, and the aid of specialized tools.

In this thesis we propose state-of-the-art tools for authoring VR applications. These tools

are designed by inspiration of modern methodologies employed in the video game development

industry. They employ visual tools and automatized test that allow to save huge amounts of

time and resources. In addition, we have implemented a network synchronization protocol that

allows applications to be executed in distributed multi-display systems.

Besides, our dissertation offers innovations that enhance realism in physics-based simula-

tions. Specifically, we have focused on the areas of object deformation and in contact handling.

The designed methods improve the behavior of each existing object in the simulation, specially

if those are deformable and belong to biological forms. Regarding deformation of bodies, one

of our innovations consist in a parallelized algorithm to deform dense volumetric objects in-

teractively. This method takes advantage of graphics hardware, being capable of deforming
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millions of voxels at interactive rates. In the same area, we have worked in the simulation of

couplings. This kind of deformation happens when several objects with different properties

are joint together. For instance, in human anatomy, where different organs (bones, ligaments,

muscles) are attached together.

Finally, regarding the stage of contact handling, we have implemented a novel algorithm for

simulating adhesive contact. This kind of contact is very common in nature, specially in a wide

range of objects, like wet surfaces, biological mucous membranes and others. This method

is quite robust ans stable, due to its implementation using contact constraints, and it actually

enhances the simulations of contact noticeably.

In this chapter we summarize the main results of this thesis, the limitations of our approaches

and possible future research directions for overcoming these limitations.

7.1 Summary of Results

Our dissertation offers several solutions to develop complex VR applications and to enhance

physic-based simulations. Regarding the development of VR applications, these solutions lie in

a set of high-level visual tools that are integrated into a first-class authoring environment. All

of these tools have been employed thanks to the achieved experience in the industry of video

game development, where it is common to employ a kind of visual tools called sandboxes. This

type of tools allow the creation and configuration of the virtual objects that will participate in

the simulation. In addition, the development environment enables quick tests aimed to verify

the correctness of the configurations of all the objects in the scene.

In the past, the creation of a multi-user VR application for a CAVE entailed the integration of

I/O peripherals in the render engine, setting up and coordinating multiple instances of the render

engine to drive all screens of the display, and importing art content in the rendering application.

Our dissertation shows that BlenderCAVE framework allows a much simpler development of

complex and interesting VR applications for a CAVE-like display. Using Blender Game Engine

(BGE) as base render engine, and taking advantage of Blender’s content creation possibilities,

BlenderCAVE augments the engine to easily direct the video output to a multi-screen display.

In addition, other innovations this thesis includes are applied to the field of the physics sim-

ulators. As known, a physics simulator is composed of several processing stages. Our disserta-
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tion incorporates new algorithms applied to some of these stages. Specifically, our contributions

address the deformation and contact handling stages. For deforming virtual objects we have de-

veloped a novel algorithm to efficiently deform dense volumetric objects interactively, with the

assistance of graphic hardware. The deformation is performed by generating a new deformed

volume via the rasterization of an embedding tetrahedral mesh. The key for its high perfor-

mance is the massive parallelization applied to the level of individual target voxel, and with

very simple operations and practically no divergence. To further accelerate rasterization, we

apply efficient multi-core CPU culling as a first step. This technology enables the deformation

and manipulation of complex biological structures, like the ones employed in medicine.

Moreover, we have achieved interactive simulations of complex human joints for medical

applications. The keys to the success in the deformation of groups of virtual objects that are

joint together, like the organs that lie inside human anatomy, are the optimization of represen-

tations, and the efficient handling of couplings and contacts in the constraint-based dynamics

solver. Each organ might have diverse properties, ranging from hard bone to soft fat tissue,

and intricate contact situations could happen. This technique formulates all the couplings in an

unified manner and solves all the affected organs as a group.

Regarding the contact handling stage, we have shown a model for adhesive contact that can

be efficiently integrated into existing constraint-based contact solvers. Adhesion phenomenon is

very common in nature, as shown in figure 1.5. Our method retains the robustness of constraint-

based contact while allowing for rich and versatile adhesion effects under a diverse range of

object types. It actually enriches the simulation of contact and it is also suitable for medical VR

applications.

The techniques we have presented in this dissertation have focused on efficiently obtaining

plausible solutions for deforming volumetric objects, simulating the deformation of complex

anatomy and the simulation of adhesive contact. Another important contribution in this thesis

is a complete framework of techniques to accelerate the development of all kind of VR applica-

tions, even those used in distributed, multi-display setups. In the next section we describe some

possible extensions to our works.
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7.2 Future Work

The results we have presented in this dissertation show that we are heading towards better tools

and frameworks for creating VR applications. In addition, new contributions to the physics

simulation pipeline enriches the behavior of virtual objects. The limitations of the approaches

originate at the very core of the goals we want to achieve. For example, the addition of new types

of objects, like volumetric deformable bodies, and the addition of new simulation techniques,

like coupling and adhesion contact, add a noticeable workload to the simulation, making it hard

to keep interactive rates. On the other hand, the most important limitation of our algorithms is

that they are fast approximations of physically correct simulations. However, we believe that

the approaches described in this dissertation form a base-line for further research towards more

realistic solutions.

7.2.1 Limitations of the Current Techniques

In previous chapters, we have already discussed several limitations of the techniques we have

developed (See Sections 3.4, 4.5, 5.5 and 6.5). Here we list those limitations again:

• Our algorithm to deform volumetric bodies suffers some limitations, such as the existence

of false positives during culling. However, these false positives do not hurt performance

significantly. Another limitation is the smoothing introduced by trilinear interpolation of

input data. More costly filtering approaches would produce higher quality results.

• Regarding our adhesion algorithm, the adhesion model incorporates a thermodynamics

formulation of debonding from the mechanics literature. Connected to this feature, one

limitation in our work is that the formulation of bonding and the connection between

friction and adhesion are not sustained by a comparable thermodynamics approach.

• In the case of friction in adhesive contact, we obtained plausible results by selecting the

most restrictive constraint out of Coulomb friction and tangential adhesion, as discussed

in Section 4.3.2.

• Another limitation of our adhesion algorithm is that it requires contact tracking, not

present in some of the available rigid body dynamics simulators, in order to evolve the

value of the adhesion intensity across frames.
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• Although this was not a major problem in our examples, relaxation solvers, such as

Gauss-Seidel, may suffer from slow convergence at times. This is a general limitation

in constraint-based contact formulations, and more efficient LCP solvers are still an issue

under investigation.

• About coupling simulation in our demo of the human shoulder, the approximations that

we carry out have some implications on the accuracy of the simulation. For example, the

couplings between the various parts are not fully anatomically correct, and sometimes

we partially eliminate the possibility of muscles to slide on top of bones. In order to

fully simulate the shoulder anatomy, we would need to incorporate the bursa, but this

structure produces even more intensive contact situations that would be difficult to handle

interactively. The fact that our contact handling is based on iterative solvers prevents us

from guaranteeing a certain minimum frame rate, although we did not see this to be a

problem in practice.

• Finally, regarding BlenderCave, as discussed in the chapter 6, the current communication

protocol is particularly efficient for event-driven state changes, but applications with a

complex state, such as physically based simulations, may require modifications. Under

a complex state, there is a trade-off between distribution of state computations, commu-

nication of state updates, and network bandwidth. The current framework is also limited

in terms of the tight connection between BGE instances and output screens. Currently,

each screen is driven by a different BGE instance, running on a different PC. For tiled

displays, it might be convenient to distribute rendering load differently, perhaps with the

same machine driving several displays. The critical factor should be the minimization of

the computing resources, subject to fulfilling the desired refresh rate, which makes the

problem application-dependent.

One limitation we have not included in the list is the initial assumption of working with

2-manifold triangle meshes in the models that are represented in this manner. The adaptation of

our approaches for non-manifold meshes is not trivial, and falls out of the scope of this thesis.
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7.2.2 Applications and Further Analysis

In the case of our volumetric deformation technique, from an applied point of view, our method

allows interactive editing, manipulation, and deformation of dense volume data. It would be

interesting to handle other types of mesh elements and basis functions, such as trilinear inter-

polation in hexahedra. This extension would require modifications to the mapping function and

the culling algorithm.

Regarding our method to simulate adhesive contact, it currently handles only well-defined

interfaces between rigid and deformable bodies. Therefore, another interesting extension to our

work would be to integrate it with other materials, such as viscoplastic ones, for which adhesion

produces very interesting effects.

In the matter of our anatomy palpation demo, there are many possible avenues for fu-

ture work. Following a customer-driven development, we are working together with both

arthroscopy and physiotherapy experts to assess the quality of our models and guide further

developments. In arthroscopy, many medically interesting interactions are related to tissue cut-

ting and to suture. Therefore, a fully fleshed arthroscopy simulation would require interactive

simulation of topological changes and contact with thread models.

Regarding BlenderCave, our framework for authoring VR applications, it is currently ac-

tively being developed. Since it was released as open-source, other research teams have been

interested in it and have contributed with new functionality. Some teams have adapted Blender-

Cave to their CAVE topologies and to other I/O devices. In near future we expect multiple

directions in which the features of BlenderCAVE could be improved or extended. For more gen-

eral VR applications, it would be necessary to provide support to newer I/O peripherals. This

could be done by integrating existing VR libraries for hardware abstraction, possibly through

Python-based extensions or introducing modifications in the source code of BGE. Last, Blender-

CAVE could be extended with features that would increase the rendering quality on the CAVE.

Such features include color and brightness correction for seamless image continuity across the

screens. Fortunately, BlenderCave shares its code base with Blender 3D, therefore, our frame-

work directly benefits of each new contribution applied to improve Blender 3D. In near future

we expect to have several cutting-edge capabilities inside the core of our framework.

Developing VR applications that simulate reality is an incredibly complex problem, there

are several unresolved challenges and we are still quite far from achieving animations indistin-
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guishable from reality, assuming if this is even possible.
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