
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Constraint-Based Simulation of Adhesive Contact

Jorge Gascón, Javier S. Zurdo & Miguel A. Otaduy

URJC Madrid, Spain

Abstract
Dynamics with contact are often formulated as a constrained optimization problem. This approach allows handling
in an integrated manner both non-penetration and frictional constraints. Following developments in the computa-
tional mechanics field, we have designed an algorithm for adding the simulation of adhesive contact constraints in
the context of state-of-the-art constraint-based contact solvers. We show that implicit adhesion constraints can be
handled with minor changes to existing solvers, and we demonstrate our algorithm on a diverse range of objects,
including mass-spring cloth, volumetric finite-element models, and rigid bodies.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three Dimensional Graph-
ics and Realism—Animation

1. Introduction

Adhesion can be regarded as a thermodynamic effect in
which a potential energy is stored at the interface between
two surfaces. Debonding two surfaces that are adhered re-
quires a traction force high enough to release the adhesion
energy [RCC99]. In computer graphics, adhesion is com-
monly handled in the simulation of viscoplastic materials
using continuum models (See [BWHT07,WTGT09] for two
ways of merging viscoplastic materials due to adhesion).

Instead, in this paper we are interested in modeling and
simulating adhesion at a coarser scale, in order to efficiently
handle sticking effects at the interface between rigid and/or
elastic objects. We follow a constraint-based formulation, in-
spired by adhesion models described in the computational
mechanics literature [Wri02, Fre87, RCC99]. Our main con-
tribution is an algorithm for efficiently handling adhesion as
part of constrained dynamics simulation.

Given a constraint-based formulation of contact dynam-
ics (Section 3), and a formulation of adhesion using uni-
lateral constraints (Section 4), we have developed an algo-
rithm (Section 5) for seamlessly integrating adhesion con-
straints into state-of-the-art constraint-based contact solvers.
A priori, this integration is not trivial, because, unlike non-
penetration constraints, adhesion constraints are formulated
in terms of both contact force and the separation at the con-
tact interface. When formulating these constraints implicitly
(a condition for large time steps), they become non-linear,

thereby complicating the solution of the system. However,
we present an algorithm that elegantly handles implicit ad-
hesion constraints in the context of a projected-Gauss-Seidel
solver for linear complementarity problems.

Our approach is general, and it handles rigid bodies, volu-
metric elastic bodies, thin shells such as cloth, and their com-
binations, as shown in our examples. Once the mathematical
formulation is developed, integrating adhesion in state-of-
the-art constraint-based contact solvers is simple and effi-
cient, allowing interesting effects with low effort.

2. Related Work

Constraint-based formulations of contact handling have
become popular in computer graphics over the last
twenty years [BW92, Bar94, PPG04, KEP05, DDKA06,
Erl07, KSJP08, OTSG09, CAR∗09]. Most of the existing
approaches formulate constrained dynamics as a linear
complementarity problem (LCP), which can be solved,
for example, using projected-Gauss-Seidel (PGS) relax-
ation [CPS92]. The benefit of LCP-type solutions is that all
constraints are handled simultaneously. Moreover, formu-
lating the constraints implicitly increases robustness under
large time steps [ST96], although the constrained problem
needs to be linearized in order to cast it as an LCP.

Even though our model is intended to constraint-based
simulation of contact, there are also other succesful ap-
proaches to contact handling, namely penalty-based meth-
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Figure 1: Pieces of candy with diverse adhesion coefficients fall on top of a block of Jell-O.

ods [BJ07, HVS∗09], and impulse-based methods [BFA02,
GBF03]. In computer graphics, adhesion (also referred to as
stiction) has been modeled before in a way similar to penalty
forces [JL93, CJY02, BMF03, WGL04, SLF08]. When ad-
hesion takes place, a bilateral spring is set between contact
points. As we will discuss later, under traction our adhesion
constraints can also be regarded as springs, but under com-
pression they are not active, and we completely enforce non-
penetration instead. Another important difference between
our constraint-based adhesion and typical adhesive springs
is our physically-based model for decohesion.

The formulation of adhesion using constraints was largely
developed in the field of contact mechanics by Fre-
mond [Fre87], while Raous et al. [RCC99] developed a
thermodynamics background and the connection to fric-
tion. A summary can be found in the book of Wrig-
gers [Wri02]. Similar to adhesion, other phenomena, such
as puncture [CAR∗09], can be modeled using constraints in
conjunction with contact.

3. Constraint-Based Contact

In this section, we describe the underlying constrained dy-
namics formulation where we include the formulation of ad-
hesion constraints. We first describe a general formulation of
the constrained dynamics problem, and then we discuss its
solution using a PGS solver.

3.1. Formulation

Given state and velocity vectors q and v that group the co-
ordinates and velocities of all objects in a scene, we target
constrained dynamics formulations of a general form

Mv̇ = F, (1)

q̇ = Gv, (2)

g(q)≥ 0. (3)

M denotes de mass matrix and F is the force vector, G re-
lates the velocity vector to the derivative of the generalized
coordinates (G is typically identity for deformable bodies,
but not for rigid bodies [Sha89]), and g is a vector of con-
straints. In our examples, we have used linear co-rotational

finite element models [MG04], mass-spring cloth [BFA02],
and rigid bodies. We formulate contact constraints by exe-
cuting continuous collision detection between state updates.
The general formulation is valid for other constraints such as
joints, although we did not test them in our examples.

We assume that the dynamics equations of the system are
discretized and linearized, which yields a constrained veloc-
ity formulation of the form:

Av = JT
λ+b, (4)

0≤ λ ⊥ Jv≥ c. (5)

The system dynamics may be discretized with explicit in-
tegrators or implicit integrators with force linearization
(see [BW98] for the formulation of A and b under im-
plicit Backward Euler discretization). λ represents contact
impulses at the constraints, while Eq. (5) describes non-
penetration as linear complementarity constraints. In our ex-
amples, we used an implicit position-level LCP, linearized
to yield velocity constraints as shown here. This type of for-
mulation (including friction, which is omitted here for read-
ability) can be found, for example, in [DDKA06]. Specifi-
cally, we have followed the approach of [OTSG09] for the
discretization of both dynamics and contact constraints.

The complete system from Eqs. (4) and (5) constitutes a
mixed linear complementarity problem (MLCP). With fric-
tion, the system remains an MLCP if friction constraints are
expressed using a linearized version of Coulomb’s friction
cone. We align the friction cone at each contact with the di-
rection of the unconstrained tangential velocity. The MLCP
can be transformed into the following LCP:

0≤ λ ⊥ Bλ≥ d, with (6)

B = JA−1JT , d = c−JA−1b.

In our examples, we have used iterative constraint anticipa-
tion [OTSG09], a variant of this formulation that produces a
sparse matrix B by nesting two relaxation solvers. The ap-
proach described in this paper for including adhesive con-
straints into the LCP is independent of the way in which the
LCP is formulated, but, for deformables objects with many
degrees of freedom and many contacts, iterative constraint
anticipation provides better performance in practice.
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The ith constraint in Eq. (6) represents the implicit non-
penetration constraint of the ith contact, after linearization
and time integration. Then, the gap function gi at the ith con-
tact at the end of the time step can simply be expressed (up
to linearization) as

gi = ∆t(Biλ−di). (7)

Bi and di represent the ith rows of B and d, respectively.

3.2. Solution

We consider the solution of the LCP problem above using
a PGS solver. Then, when a PGS iteration reaches the ith

contact, the constraints for that contact can be expressed as:

0≤ λi ⊥ Biiλi−di ≥ 0, (8)

with di = di−Biλi. (9)

λi contains all values of λ but λi. It combines values from
the current iteration of PGS (up to the ith entry), with values
from the previous iteration (after the ith entry). Bi is defined
accordingly, by removing Bii from Bi.

During each iteration of PGS, the ith contact is handled as
follows:

1. Compute λ
∗
i = di

Bii
.

2. Project λi = max(λ∗i ,0).

4. Formulation of Adhesion

The thermodynamics model of adhesion by Raous et
al. [RCC99] defines an elastic potential energy at a contact
interface as a function of the separation gap g and an ad-
hesion intensity β (with both terms squared). The adhesion
intensity term captures the thermodynamic effect that, under
traction, internal adhesion energy can be released as heat.
This thermodynamics model has two implications when de-
veloping a computational algorithm for simulating adhesion:
(i) it defines a constraint law that relates the maximum adhe-
sive force to the contact gap and the adhesion intensity, and
(ii) it defines a physical law for debonding, i.e., the time-
dependent reduction of the adhesion intensity due to heat
release. In this section, we describe the adhesion constraint
law and the debonding law, as well as our own model for
bonding, i.e., the time-dependent increase of the adhesion
intensity under compression.

4.1. Adhesion Constraints

An adhesion constraint implies that the traction force must
be smaller than a maximum defined by the adhesion inten-
sity. Together with the non-penetration constraint, adhesive
contact can be formulated with the following complementar-
ity constraints [RCC99, Wri02]:

0≤−pi +Ciβ
2
i gi ⊥ gi ≥ 0, (10)

where βi ∈ [0,1] is the adhesion intensity, Ci is the adhesion
stiffness, and pi is the traction. The value of the adhesion
stiffness depends on the materials and the local properties of
the contact interface.

In order to handle adhesion in the tangent plane, we use a
box model that accounts separately for the normal adhesion
and tangential adhesion along two orthogonal directions. We
set a local frame on each contact, using the normal n, the di-
rection of unconstrained tangential velocity, t, and the binor-
mal b = n×t. The adhesion constraint can then be expressed
for each contact impulse and gap function independently.
Tangential adhesion can be regarded as a model similar to
Coulomb friction, with the difference that the magnitude of
the tangential force is limited by the adhesion intensity, in-
stead of the magnitude of the normal force.

4.2. Bonding

Bonding and debonding model the evolution of the adhesion
intensity as a function of the contact traction/compression.
In the case of bonding, we account for a bonding rate, r, and
a compression value for saturation, p0. Adhesion intensity
will grow as long as compression is exerted, until saturation
is reached. Specifically, our bonding model is formulated as:

β̇i = r max(pi−βi p0,0). (11)

4.3. Debonding

For the debonding model, we follow the linear case in the
thermodynamic adhesion model [RCC99,Wri02]. Consider-
ing the adhesion stiffness C and the gap function g, debond-
ing starts taking place once Cg2

β reaches a maximum ad-
hesion energy W . The term Cg2

β is obtained by differen-
tiating a thermodynamic energy 1/2Cg2

β
2 w.r.t. β. Please

see [RCC99] for the full details. During debonding, adhe-
sion decreases at a rate of 1

η
, where η is a viscosity param-

eter. Formally, we can write the debonding model for the ith

contact as:

β̇i =
1
η

min(W −Cig
2
i βi,0). (12)

5. Algorithm

We describe now our algorithm for including adhesion con-
straints in the contact solver outlined in Section 3. We start
by describing the 1D case, and then extend it to the full
3D case including tangential adhesion. Last, we describe the
evolution of the adhesion intensity.

5.1. Implicit Adhesion Constraints: 1D Case

Our goal is to execute a PGS step similar to the one in the
non-adhesive case (Eq. (8)). In the adhesion constraint in
Eq. (10), contact traction is related to the gap function, hence
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implicit adhesion constraints do not allow for a simple com-
putation of a projection value. Contact traction is related to
the contact impulse by pi =− λi

∆tAi
, with Ai the local contact

area. Accounting for the implicit definition of the gap func-
tion from Eq. (7), an adhesion constraint can be reformulated
in terms of the contact impulse as:

0≤ λi +∆tAiCiβ
2
i gi ⊥ Biλ≥ di. (13)

In order to compute the local area, at edges and vertices we
store the averaged area of incident triangles, and at each con-
tact we select the smallest area from those of the two primi-
tives involved in contact. In this way, contact traction is less
sensitive to mesh resolution.

By substituting the implicit gap function from Eq. (7), we
obtain the following implicit linearized adhesion constraint:

0≤ λi +∆t2AiCiβ
2
i (Biλ−di). (14)

A priori, the constraint depends on all values of contact im-
pulses λ, but we are interested in its evaluation in one PGS
step. Then, we can substitute the evaluation of the right-
hand-side of the PGS step given by Eq. (9):

0≤ λi +∆t2AiCiβ
2
i (Biiλi−di). (15)

It suffices to single out λi in order to express the implicit
adhesion constraint on the contact impulse. By analogy
with Eq. (8), in the adhesive case the complementarity con-
straint in the PGS step turns into:

∆t2AiCiβ
2
i di

1+∆t2AiCiβ
2
i Bii
≤ λi ⊥ Biiλi−di ≥ 0. (16)

As demonstrated, since di is readily computed during the
PGS iteration, applying implicit adhesion constraints effec-
tively reduces to modifying the projection values of the PGS
solver.

5.2. Full 3D Adhesion

With the inclusion of tangential adhesion, the contact im-
pulse at the ith contact can be represented as a vector λi =
(λi,n,λi,t ,λi,b)

T , with the tangential impulses aligned with
the pre-contact tangent velocity and the binormal. Using a
Block-PGS relaxation solver, the Bii block of the B matrix

is now Bii =

(
Bii,nn Bii,nt Bii,nb
Bii,tn Bii,tt Bii,tb
Bii,bn Bii,bt Bii,bb

)
.

By analogy with the case with normal adhesion only, we
can write now the implicit normal gap in the case of full 3D
adhesion, in the context of the Block-PGS solver:

gi,n = ∆t(Bii,nnλi,n−di,n), (17)

with di,n = di,n−Bi,nλ+Bii,ntλi,t +Bii,nbλi,b.

Tangential and binormal gaps can be expressed in a similar
way. By inserting these implicit expressions into the adhe-
sion constraints expressed as in Eq. (13), we can single out

the contact impulses and formulate the projection values for
the Block-PGS solver. At the projection step, tangential and
binormal adhesion are handled slightly differently than in
the normal direction, because forces must be constrained in
positive and negative directions.

Eventually, the algorithm for Block-PGS with implicit ad-
hesive constraints can be outlined as follows:

1. Compute di,n = di,n−Bi,nλ+Bii,ntλi,t +Bii,nbλi,b.

2. Compute λ
∗
i,n = di,n

Bii,nn
.

3. Project λi,n = max(λ∗i,n,min( ∆t2AiCiβ
2
i di,n

1+∆t2AiCiβ
2
i Bii,nn

,0)).

4. Compute di,t = di,t −Bi,tλ+Bii,tnλi,n +Bii,tbλi,b.

5. Compute λ
∗
i,t = di,t

Bii,tt
.

6. If λ
∗
i,t < 0, λi,t = max(λ∗i,t ,min( ∆t2AiCiβ

2
i di,t

1+∆t2AiCiβ
2
i Bii,tt

,0)).

7. Else, λi,t = min(λ∗i,t ,max( ∆t2AiCiβidi,t
1+∆t2AiCiβiBii,tt

,0)).
8. Do for λi,b similarly as for λi,t .

It is convenient to include a friction model, and, out of tan-
gential adhesion and friction, apply the most restrictive pro-
jection. This projection refers to the value used for projec-
tion in step 6 above. We have used Coulomb’s friction model
with a 4-sided pyramid approximation. Same as for tangen-
tial adhesion, we align the pyramid in every time step to the
unconstrained relative velocity at each contact.

5.3. Adhesion Evolution

After a complete step of the constrained dynamics solve,
we evolve the adhesion intensity β at all contacts. First, we
determine the compression or traction state, and apply the
bonding or debonding model, as appropriate. Normal com-
pression may increase bonding, while normal traction may
decrease bonding. Tangential adhesion forces, on the other
hand, always tend to decrease bonding (if they exceed the
debonding energy). In case of normal traction, we compute
the total adhesive traction p = ‖(pn, pt , pb)‖ and apply the
debonding law in Eq. (12). In case of normal compression,
we compute the tangential adhesive traction p = ‖(pt , pb)‖,
and add simultaneous debonding and bonding effects.

Given the time-derivative of the adhesion intensity, β̇, we
have used a simple explicit Euler integrator in order to com-
pute the adhesion intensity for the next time step. We found
that, for our examples, interesting adhesion effects take place
with rather slow bonding and debonding dynamics, hence a
simple explicit integrator sufficed.

After computing the adhesion coefficient for the next time
step, we eliminate contacts where debonding has completely
taken place. Eq. (12) models a first order system that never
reaches β = 0, hence we apply full debonding when the gap
function at a contact grows beyond a threshold. This thresh-
old is set based on a reference gap value, as discussed next
along with our results.
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Figure 2: A swinging cloth hits a wall and adheres to it until
it slowly starts debonding.

6. Results

In the accompanying video, we show the behavior of the ad-
hesion model under varying parameter values, and compare
it to frictionless contact and friction-only contact. For pa-
rameter setting, we used as reference a cube of 10−3m3 and
density 103kg/m3 adhered to the ceiling. This cube produces
a traction of 9.8N/m2. In order to maintain a gap of 1mm
under full adhesion β = 1, the adhesion stiffness must be
C = 106N/m3. If we assume that debonding takes place at
this gap value, then the debonding energy is W = 1. The vis-
cosity η can be set based on the desired debonding rate, and
similarly the bonding parameters can be set according to the
desired bonding rate. In our examples, we have set the gap
for full debonding to twice the reference gap. The smaller
the reference gap, the larger the required stiffness in order to
maintain a certain traction. Thanks to the implicit formula-
tion of adhesion constraints, we were able to simulate in a
stable manner adhesion stiffness values in the range of 106

to 108N/m3 with time steps between 1ms and 5ms.

Our simulation examples show the application of our al-
gorithm to mass-spring cloth (Fig. 2), and combined rigid
and deformable bodies (Fig. 1). In the video of the swinging
cloth from Fig. 2, we demonstrate that the overall behavior
of adhesion varies little under varying mesh resolution. The
candy demo depicts rich bonding/debonding effects, and we
have also applied our algorithm to a facial animation setting
(Fig. 3), where the lips of a character briefly stick to each
other when opening the mouth. All our examples were ren-
dered using YafaRay.

We have executed our demos on a 1.8-GHz Intel Core 2
Duo processor PC with 2GB RAM. In the candy demo, the
deformable objects are meshed with a total of approximately
10K tetrahedra, and the triangle meshes involved in contin-
uous collision detection consist of a total of 28K triangles.
The adhesion properties are dominated by the adhesion stiff-
ness of the Jell-O, which is 4× 107N/m3, and the Coulomb
friction coefficient is µ = 0.3 for all objects in the scene. As
shown in Fig. 4, the average number of contacts in the simu-
lation is 151, and a maximum of 531. The 25-second simula-

Figure 3: Simulation of an opening and closing mouth, with
adhesion taking place at the lips.
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Figure 4: Comparison of number of contact constraints and
timings per timestep for the candy demo from Fig. 1 with and
without adhesion.

tion takes 20 minutes to compute (1.6 seconds/frame or 0.4
seconds/timestep with 8ms timesteps), which we consider
is reasonably fast for a constrained deformation problem of
the size described. We also computed the same simulation
without adhesion constraints, and it took 13 minutes (1 sec-
ond/frame). The main difference for the cost is not the con-
vergence rate, which is almost the same in both cases, but the
number of contacts. Without adhesion, contacts break easier,
and the average number of contacts is 97, and a maximum
of 330, as shown also in Fig. 4.

7. Discussion

In this paper, we have shown a model for adhesive con-
tact that can be efficiently integrated into existing constraint-
based contact solvers. It retains the robustness of constraint-
based contact while allowing for rich and versatile adhesion
effects under a diverse range of object types.

Moreover, the adhesion model incorporates a thermody-
namics formulation of debonding from the mechanics liter-
ature. Connected to this feature, one limitation in our work
is that the formulation of bonding and the connection be-
tween friction and adhesion are not sustained by a compa-
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rable thermodynamics approach. Regarding friction, we ob-
tained plausible results by selecting the most restrictive con-
straint out of Coulomb friction and tangential adhesion, as
discussed in Section 5.2. Another limitation of our algorithm
is that it requires contact tracking, not present in some of the
available rigid body dynamics simulators, in order to evolve
the value of the adhesion intensity across frames.

Although this was not a major problem in our exam-
ples, relaxation solvers, such as Gauss-Seidel, may suffer
from slow convergence at times. This is a general limitation
in constraint-based contact formulations, and more efficient
LCP solvers are still an issue under investigation.

Our model handles only well-defined interfaces between
rigid and deformable bodies. Therefore, another interesting
extension to our work would be to integrate it with other
materials, such as viscoplastic ones, for which adhesion pro-
duces very interesting effects.
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